MInference / app.py
iofu728's picture
Feature(MInference): update NeurIPS'24
0830175
raw
history blame
6.33 kB
import subprocess
import os
import torch
import gradio as gr
import os
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from transformers.utils.import_utils import _is_package_available
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = """
# [MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention](https://aka.ms/MInference) (NeurIPS'24 Spotlight)
_Huiqiang Jiang†, Yucheng Li†, Chengruidong Zhang†, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_
<h3 style="text-align: center;"><a href="https://github.com/microsoft/MInference" target="blank"> [Code]</a>
<a href="https://aka.ms/MInference" target="blank"> [Project Page]</a>
<a href="https://arxiv.org/abs/2407.02490" target="blank"> [Paper]</a></h3>
## News
- 🧤 [24/09/26] MInference has been accepted as **spotlight** at **NeurIPS'24**. See you in Vancouver!
- 👘 [24/09/16] We are pleased to announce the release of our KV cache offloading work, [RetrievalAttention](https://aka.ms/RetrievalAttention), which accelerates long-context LLM inference via vector retrieval.
- 🥤 [24/07/24] MInference support [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) now.
- 🪗 [24/07/07] Thanks @AK for sponsoring. You can now use MInference online in the [HF Demo](https://huggingface.co/spaces/microsoft/MInference) with ZeroGPU.
- 📃 [24/07/03] Due to an issue with arXiv, the PDF is currently unavailable there. You can find the paper at this [link](https://export.arxiv.org/pdf/2407.02490).
- 🧩 [24/07/03] We will present **MInference 1.0** at the _**Microsoft Booth**_ and _**ES-FoMo**_ at ICML'24. See you in Vienna!
<font color="brown"><b>This is only a deployment demo. You can follow the code below to try MInference locally.</b></font>
```bash
git clone https://huggingface.co/spaces/microsoft/MInference
cd MInference
pip install -r requirments.txt
pip install flash_attn pycuda==2023.1
python app.py
```
"""
LICENSE = """
<div style="text-align: center;">
<p>© 2024 Microsoft</p>
</div>
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaMA-3-8B-Gradient-1M w/ MInference</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
# Load the tokenizer and model
model_name = "gradientai/Llama-3-8B-Instruct-Gradient-1048k" if torch.cuda.is_available() else "Qwen/Qwen2-0.5B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name, torch_dtype="auto", device_map="auto"
) # to("cuda:0")
if torch.cuda.is_available() and _is_package_available("pycuda"):
from minference import MInference
minference_patch = MInference("minference", model_name)
model = minference_patch(model)
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")]
@spaces.GPU(duration=120)
def chat_llama3_8b(
message: str, history: list, temperature: float, max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
# global model
conversation = []
for user, assistant in history:
conversation.extend(
[
{"role": "user", "content": user},
{"role": "assistant", "content": assistant},
]
)
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(
model.device
)
streamer = TextIteratorStreamer(
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = dict(
input_ids=input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs["do_sample"] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
# print(outputs)
yield "".join(outputs)
# Gradio block
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface")
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False,
),
],
examples=[
["How to setup a human base on Mars? Give short answer."],
["Explain theory of relativity to me like I’m 8 years old."],
["What is 9,000 * 9,000?"],
["Write a pun-filled happy birthday message to my friend Alex."],
["Justify why a penguin might make a good king of the jungle."],
],
cache_examples=False,
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch(share=False)