Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
import os | |
import torch | |
import gradio as gr | |
import os | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
from threading import Thread | |
from transformers.utils.import_utils import _is_package_available | |
# Set an environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
DESCRIPTION = """ | |
# [MInference 1.0: Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention](https://aka.ms/MInference) (Under Review, ES-FoMo @ ICML'24) | |
_Huiqiang Jiang†, Yucheng Li†, Chengruidong Zhang†, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang and Lili Qiu_ | |
<h3 style="text-align: center;"><a href="https://github.com/microsoft/MInference" target="blank"> [Code]</a> | |
<a href="https://aka.ms/MInference" target="blank"> [Project Page]</a> | |
<a href="https://arxiv.org/abs/2407.02490" target="blank"> [Paper]</a></h3> | |
## News | |
- 🪗 [24/07/07] Thanks @AK for sponsoring. You can now use MInference online in the [HF Demo](https://huggingface.co/spaces/microsoft/MInference) with ZeroGPU. | |
- 🧩 [24/07/03] We will present **MInference 1.0** at the _**Microsoft Booth**_ and _**ES-FoMo**_ at ICML'24. See you in Vienna! | |
## TL;DR | |
**MInference 1.0** leverages the dynamic sparse nature of LLMs' attention, which exhibits some static patterns, to speed up the pre-filling for long-context LLMs. It first determines offline which sparse pattern each head belongs to, then approximates the sparse index online and dynamically computes attention with the optimal custom kernels. This approach achieves up to a **10x speedup** for pre-filling on an A100 while maintaining accuracy. | |
<font color="brown"><b>This is only a deployment demo. You can follow the code below to try MInference locally.</b></font> | |
```bash | |
git clone https://huggingface.co/spaces/microsoft/MInference | |
cd MInference | |
pip install -r requirments.txt | |
pip install flash_attn pycuda==2023.1 | |
python app.py | |
``` | |
""" | |
LICENSE = """ | |
<div style="text-align: center;"> | |
<p>© 2024 Microsoft</p> | |
</div> | |
""" | |
PLACEHOLDER = """ | |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;"> | |
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">LLaMA-3-8B-Gradient-1M w/ MInference</h1> | |
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p> | |
</div> | |
""" | |
css = """ | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
""" | |
# Load the tokenizer and model | |
model_name = "gradientai/Llama-3-8B-Instruct-Gradient-1048k" if torch.cuda.is_available() else "Qwen/Qwen2-0.5B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, torch_dtype="auto", device_map="auto" | |
) # to("cuda:0") | |
if torch.cuda.is_available() and _is_package_available("pycuda"): | |
from minference import MInference | |
minference_patch = MInference("minference", model_name) | |
model = minference_patch(model) | |
terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>")] | |
def chat_llama3_8b( | |
message: str, history: list, temperature: float, max_new_tokens: int | |
) -> str: | |
""" | |
Generate a streaming response using the llama3-8b model. | |
Args: | |
message (str): The input message. | |
history (list): The conversation history used by ChatInterface. | |
temperature (float): The temperature for generating the response. | |
max_new_tokens (int): The maximum number of new tokens to generate. | |
Returns: | |
str: The generated response. | |
""" | |
# global model | |
conversation = [] | |
for user, assistant in history: | |
conversation.extend( | |
[ | |
{"role": "user", "content": user}, | |
{"role": "assistant", "content": assistant}, | |
] | |
) | |
conversation.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to( | |
model.device | |
) | |
streamer = TextIteratorStreamer( | |
tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
eos_token_id=terminators, | |
) | |
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash. | |
if temperature == 0: | |
generate_kwargs["do_sample"] = False | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
outputs.append(text) | |
# print(outputs) | |
yield "".join(outputs) | |
# Gradio block | |
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface") | |
with gr.Blocks(fill_height=True, css=css) as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.ChatInterface( | |
fn=chat_llama3_8b, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion( | |
label="⚙️ Parameters", open=False, render=False | |
), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.95, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=512, | |
label="Max new tokens", | |
render=False, | |
), | |
], | |
examples=[ | |
["How to setup a human base on Mars? Give short answer."], | |
["Explain theory of relativity to me like I’m 8 years old."], | |
["What is 9,000 * 9,000?"], | |
["Write a pun-filled happy birthday message to my friend Alex."], | |
["Justify why a penguin might make a good king of the jungle."], | |
], | |
cache_examples=False, | |
) | |
gr.Markdown(LICENSE) | |
if __name__ == "__main__": | |
demo.launch(share=False) | |