import torch import numpy as np import math import triton import triton.language as tl import pycuda.autoprimaryctx from pycuda.compiler import SourceModule from flash_attn import flash_attn_varlen_func # @triton.autotune( # configs=[ # triton.Config({}, num_stages=1, num_warps=4), # triton.Config({}, num_stages=1, num_warps=8), # triton.Config({}, num_stages=2, num_warps=4), # triton.Config({}, num_stages=2, num_warps=8), # triton.Config({}, num_stages=3, num_warps=4), # triton.Config({}, num_stages=3, num_warps=8), # triton.Config({}, num_stages=4, num_warps=4), # triton.Config({}, num_stages=4, num_warps=8), # triton.Config({}, num_stages=5, num_warps=4), # triton.Config({}, num_stages=5, num_warps=8), # ], # key=['N_CTX'], # ) @triton.jit def triton_sparse_fwd_kernel( Q, K, V, seqlens, sm_scale, block_count, block_offset, column_count, column_index, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vn, stride_vk, stride_oz, stride_oh, stride_om, stride_ok, Z, H, N_CTX, NUM_ROWS, NNZ_S, NNZ_V, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr, BLOCK_DMODEL: tl.constexpr, dtype: tl.constexpr, ): start_m = tl.program_id(0) off_hz = tl.program_id(1) seqlen = tl.load(seqlens + off_hz // H) if start_m * BLOCK_M >= seqlen: return # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) offs_d = tl.arange(0, BLOCK_DMODEL) qo_offset = (off_hz // H) * stride_qz + (off_hz % H) * stride_qh kv_offset = (off_hz // H) * stride_kz + (off_hz % H) * stride_kh q_ptrs = Q + qo_offset + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk k_ptrs = K + kv_offset + offs_d[:, None] * stride_kk v_ptrs = V + kv_offset + offs_d[None, :] * stride_vk o_ptrs = Out + qo_offset + offs_m[:, None] * stride_om + offs_d[None, :] * stride_ok num_blks = tl.load(block_count + off_hz * NUM_ROWS + start_m) blks_ptr = block_offset + (off_hz * NUM_ROWS + start_m) * NNZ_S num_cols = tl.load(column_count + off_hz * NUM_ROWS + start_m) cols_ptr = column_index + (off_hz * NUM_ROWS + start_m) * NNZ_V # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # scale sm_scale by log_2(e) and use # 2^x instead of exp in the loop because CSE and LICM # don't work as expected with `exp` in the loop qk_scale = sm_scale * 1.44269504 # load q: it will stay in SRAM throughout q = tl.load(q_ptrs) q = (q * qk_scale).to(dtype) # loop over k, v and update accumulator m_mask = offs_m[:, None] < seqlen for block_index in range(num_blks): start_n = tl.load(blks_ptr + block_index) cols = start_n + offs_n n_mask = cols < seqlen # -- load k, v -- k = tl.load(k_ptrs + cols[None, :] * stride_kn, mask=n_mask[None, :], other=0.0) v = tl.load(v_ptrs + cols[:, None] * stride_vn, mask=n_mask[:, None], other=0.0) # -- compute qk -- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) causal_mask = cols[None, :] <= offs_m[:, None] qk = tl.where(m_mask & causal_mask, qk, float("-inf")) qk += tl.dot(q, k) # -- compute scaling constant -- m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) # -- scale and update acc -- acc_scale = l_i * 0 + alpha # workaround some compiler bug acc *= acc_scale[:, None] acc += tl.dot(p.to(dtype), v) # -- update m_i and l_i -- l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new for start_n in range(0, num_cols, BLOCK_N): n_mask = start_n + offs_n < num_cols cols = tl.load(cols_ptr + start_n + offs_n, mask=n_mask, other=0) # -- load k, v -- k = tl.load(k_ptrs + cols[None, :] * stride_kn, mask=n_mask[None, :], other=0.0) v = tl.load(v_ptrs + cols[:, None] * stride_vn, mask=n_mask[:, None], other=0.0) # -- compute qk -- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk = tl.where(m_mask & n_mask, qk, float("-inf")) qk += tl.dot(q, k) # -- compute scaling constant -- m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) # -- scale and update acc -- acc_scale = l_i * 0 + alpha # workaround some compiler bug acc *= acc_scale[:, None] acc += tl.dot(p.to(dtype), v) # -- update m_i and l_i -- l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new # write back O acc /= l_i[:, None] # acc = tl.where(m_mask, acc / l_i[:, None], 0.0) tl.store(o_ptrs, acc.to(dtype), mask=m_mask) def triton_sparse_forward( q: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] k: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] v: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] seqlens: torch.Tensor, # [BATCH, ] block_count: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)] block_offset: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S] column_count: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)] column_index: torch.Tensor, # [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V] sm_scale: float, block_size_M: int = 64, block_size_N: int = 64, ) -> torch.Tensor: # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} o = torch.zeros_like(q) grid = (triton.cdiv(q.shape[2], block_size_M), q.shape[0] * q.shape[1], 1) dtype = tl.bfloat16 if q.dtype == torch.bfloat16 else tl.float16 triton_sparse_fwd_kernel[grid]( q, k, v, seqlens, sm_scale, block_count, block_offset, column_count, column_index, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], block_count.shape[-1], block_offset.shape[-1], column_index.shape[-1], BLOCK_M=block_size_M, BLOCK_N=block_size_N, BLOCK_DMODEL=Lk, dtype=dtype, num_warps=4, num_stages=2, ) return o def torch_build_index(seqlens, vertical_indexes, slash_indexes, context_size, block_size_M=64, block_size_N=64): device = seqlens.device batch_size, num_heads, NNZ_S = slash_indexes.shape NNZ_V = vertical_indexes.shape[-1] num_rows = triton.cdiv(context_size, block_size_M) block_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32) block_offset = torch.zeros((batch_size, num_heads, num_rows, NNZ_S), dtype=torch.int32) column_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32) column_index = torch.zeros((batch_size, num_heads, num_rows, NNZ_V), dtype=torch.int32) for b in range(batch_size): seqlen = seqlens[b] for h in range(num_heads): for m, start_m in enumerate(range(0, seqlen, block_size_M)): end_m = start_m + block_size_M s = 0 while slash_indexes[b, h, s] >= end_m: s += 1 s_idx = max(end_m - slash_indexes[b, h, s], block_size_M) s += 1 range_start = s_idx - block_size_M range_end = s_idx tmp_blocks = [] while s < NNZ_S: s_idx = max(end_m - slash_indexes[b, h, s], block_size_M) if s_idx > range_end + block_size_M: tmp_blocks += list(range(range_start, range_end, block_size_N)) range_start = s_idx - block_size_M range_end = s_idx elif s_idx > range_end: range_end += block_size_M s += 1 tmp_blocks += list(range(range_start, range_end, block_size_N)) block_count[b, h, m] = len(tmp_blocks) block_offset[b, h, m, :len(tmp_blocks)] = torch.tensor(tmp_blocks, dtype=block_offset.dtype) tmp_columns = vertical_indexes[b, h].cpu().numpy().tolist() tmp_columns = [col for col in tmp_columns if col < range_end] for range_start in tmp_blocks: range_end = range_start + block_size_N tmp_columns = [col for col in tmp_columns if col < range_start or col >= range_end] column_count[b, h, m] = len(tmp_columns) column_index[b, h, m, :len(tmp_columns)] = torch.tensor(tmp_columns, dtype=block_offset.dtype) return block_count.to(device), block_offset.to(device), column_count.to(device), column_index.to(device) PYCUDA_BUILD_INDEX_KERNEL_CODE = '''\ __device__ int min(int x, int y) { return x < y ? x : y; } __device__ int max(int x, int y) { return x > y ? x : y; } __device__ void save_blocks(int* block_offset, int range_start, int range_end, int block_size, int& block_count) { for (int idx = range_start; idx < range_end; idx += block_size) { block_offset[block_count++] = idx; } } __global__ void PYCUDA_BUILD_INDEX_KERNEL( const int* seqlens, // [BATCH, ] const int* vertical_indexes, // [BATCH, N_HEADS, NNZ_V] const int* slash_indexes, // [BATCH, N_HEADS, NNZ_S] int* block_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)] int* block_offset, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_S] int* column_count, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M)] int* column_index, // [BATCH, N_HEADS, cdiv(N_CTX, BLOCK_SIZE_M), NNZ_V] int N_HEADS, int N_ROWS, int BLOCK_SIZE_M, int BLOCK_SIZE_N, int NNZ_V, int NNZ_S ) { const int batch_idx = blockIdx.y; const int head_idx = blockIdx.x; const int group_idx = blockIdx.z; int seqlen = seqlens[batch_idx]; int block_idx_m = group_idx * blockDim.x + threadIdx.x; int start_m = block_idx_m * BLOCK_SIZE_M; if (start_m >= seqlen) { return; } int end_m = start_m + BLOCK_SIZE_M; vertical_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_V; slash_indexes += (batch_idx * N_HEADS + head_idx) * NNZ_S; int row_offset = (batch_idx * N_HEADS + head_idx) * N_ROWS + block_idx_m; block_count += row_offset; block_offset += row_offset * NNZ_S; column_count += row_offset; column_index += row_offset * NNZ_V; int tmp_col_cnt = 0, tmp_blk_cnt = 0; int s = 0, v = 0; int v_idx = vertical_indexes[v++]; int s_idx = slash_indexes[s++]; while (s_idx >= end_m) { s_idx = slash_indexes[s++]; } s_idx = max(end_m - s_idx, BLOCK_SIZE_M); int range_start = s_idx - BLOCK_SIZE_M, range_end = s_idx; while (1) { if (v_idx < range_end) { if (v_idx < range_start) { column_index[tmp_col_cnt++] = v_idx; } if (v < NNZ_V) { v_idx = vertical_indexes[v++]; } else { v_idx = end_m + BLOCK_SIZE_M; } } else { if (s < NNZ_S) { s_idx = max(end_m - slash_indexes[s++], BLOCK_SIZE_M); } else { save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt); break; } if (s_idx > range_end + BLOCK_SIZE_M) { save_blocks(block_offset, range_start, range_end, BLOCK_SIZE_N, tmp_blk_cnt); range_start = s_idx - BLOCK_SIZE_M; range_end = s_idx; } else if (s_idx > range_end) { range_end += BLOCK_SIZE_M; } } } block_count[0] = tmp_blk_cnt; column_count[0] = tmp_col_cnt; } ''' PYCUDA_BUILD_INDEX_KERNEL = SourceModule( PYCUDA_BUILD_INDEX_KERNEL_CODE, options=['-std=c++14', '-O3'], ).get_function(f'PYCUDA_BUILD_INDEX_KERNEL') def pycuda_build_index(seqlens, vertical_indexes, slash_indexes, context_size, block_size_M=64, block_size_N=64): batch_size, num_heads, NNZ_S = slash_indexes.shape NNZ_V = vertical_indexes.shape[-1] num_rows = triton.cdiv(context_size, block_size_M) block_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32, device=seqlens.device) block_offset = torch.zeros((batch_size, num_heads, num_rows, NNZ_S), dtype=torch.int32, device=seqlens.device) column_count = torch.zeros((batch_size, num_heads, num_rows), dtype=torch.int32, device=seqlens.device) column_index = torch.zeros((batch_size, num_heads, num_rows, NNZ_V), dtype=torch.int32, device=seqlens.device) num_threads = 64 # import ipdb; ipdb.set_trace() PYCUDA_BUILD_INDEX_KERNEL( seqlens, vertical_indexes, slash_indexes, block_count, block_offset, column_count, column_index, np.int32(num_heads), np.int32(num_rows), np.int32(block_size_M), np.int32(block_size_N), np.int32(NNZ_V), np.int32(NNZ_S), # grid=(triton.cdiv(num_rows, num_threads), N_HEADS, BATCH), grid=(num_heads, batch_size, triton.cdiv(num_rows, num_threads)), block=(num_threads, 1, 1), ) return block_count, block_offset, column_count, column_index def make_causal_mask(seqlens, device, context_size): batch_size = seqlens.shape[0] arange = torch.arange(context_size, dtype=torch.int32, device=device) causal_mask = arange[None, None, :, None] >= arange[None, None, None, :] causal_mask = causal_mask.repeat((batch_size, 1, 1, 1)) for b, seqlen in enumerate(seqlens): causal_mask[b, :, seqlen:, :] = False causal_mask[b, :, :, seqlen:] = False return causal_mask def make_finegrained_mask(vertical_indexes, slash_indexes, causal_mask, device): batch_size, num_heads, _ = vertical_indexes.shape context_size = causal_mask.shape[-1] arange = torch.arange(context_size, dtype=torch.int32, device=device) sparse_mask = torch.zeros((batch_size, num_heads, context_size, context_size), dtype=torch.bool, device=device) for b in range(batch_size): for h in range(num_heads): for vertical_index in vertical_indexes[b, h]: sparse_mask[b, h, :, vertical_index] = True for slash_index in slash_indexes[b, h]: sparse_mask[b, h].logical_or_(arange[:, None] - arange[None, :] == slash_index) sparse_mask.logical_and_(causal_mask) return sparse_mask def make_block_mask( block_count: torch.Tensor, block_offset: torch.Tensor, column_count: torch.Tensor, column_index: torch.Tensor, seqlens: torch.Tensor, causal_mask: torch.Tensor, device: torch.device, block_size_M: int = 64, block_size_N: int = 64. ): batch_size, num_heads, _ = block_count.shape context_size = causal_mask.shape[-1] block_mask = torch.zeros((batch_size, num_heads, context_size, context_size), dtype=torch.bool, device=device) for b in range(batch_size): for h in range(num_heads): for m, start_m in enumerate(range(0, seqlens[b], block_size_M)): end_m = start_m + block_size_M for col_idx in range(column_count[b, h, m]): block_mask[b, h, start_m:end_m, column_index[b, h, m, col_idx]] = True for blk_idx in range(block_count[b, h, m]): blk_start = block_offset[b, h, m, blk_idx].item() blk_end = blk_start + block_size_N block_mask[b, h, start_m:end_m, blk_start:blk_end] = True block_mask.logical_and_(causal_mask) return block_mask def plot_mask(mask, name, batch=0, head=0): import matplotlib.pyplot as plt import seaborn as sns plt.figure(figsize=(16, 12)) plt.clf() mask = mask[batch, head].cpu().numpy() sns.heatmap(mask) plt.savefig(name) @triton.jit def triton_dense_fwd_kernel( Q, K, V, seqlens, sm_scale, Out, stride_qz, stride_qh, stride_qm, stride_qk, stride_kz, stride_kh, stride_kn, stride_kk, stride_vz, stride_vh, stride_vn, stride_vk, stride_oz, stride_oh, stride_om, stride_ok, Z, H, N_CTX, BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr, BLOCK_N: tl.constexpr, dtype: tl.constexpr, ): start_m = tl.program_id(0) off_hz = tl.program_id(1) seqlen = tl.load(seqlens + off_hz // H) if start_m * BLOCK_M >= seqlen: return qo_offset = (off_hz // H) * stride_qz + (off_hz % H) * stride_qh kv_offset = (off_hz // H) * stride_kz + (off_hz % H) * stride_kh Q_block_ptr = tl.make_block_ptr( base=Q + qo_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_qm, stride_qk), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0) ) K_block_ptr = tl.make_block_ptr( base=K + kv_offset, shape=(BLOCK_DMODEL, N_CTX), strides=(stride_kk, stride_kn), offsets=(0, 0), block_shape=(BLOCK_DMODEL, BLOCK_N), order=(0, 1) ) V_block_ptr = tl.make_block_ptr( base=V + kv_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_vn, stride_vk), offsets=(0, 0), block_shape=(BLOCK_N, BLOCK_DMODEL), order=(1, 0) ) # initialize offsets offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) offs_n = tl.arange(0, BLOCK_N) # initialize pointer to m and l m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") l_i = tl.zeros([BLOCK_M], dtype=tl.float32) acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) # scale sm_scale by log_2(e) and use # 2^x instead of exp in the loop because CSE and LICM # don't work as expected with `exp` in the loop qk_scale = sm_scale * 1.44269504 # load q: it will stay in SRAM throughout q = tl.load(Q_block_ptr) q = (q * qk_scale).to(dtype) # loop over k, v and update accumulator lo = 0 hi = (start_m + 1) * BLOCK_M m_mask = offs_m[:, None] < seqlen for start_n in range(lo, hi, BLOCK_N): n_mask = (start_n + offs_n[None, :]) <= offs_m[:, None] # -- load k, v -- k = tl.load(K_block_ptr) v = tl.load(V_block_ptr) # -- compute qk -- qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) qk = tl.where(m_mask & n_mask, qk, float("-inf")) qk += tl.dot(q, k) # -- compute scaling constant -- m_i_new = tl.maximum(m_i, tl.max(qk, 1)) alpha = tl.math.exp2(m_i - m_i_new) p = tl.math.exp2(qk - m_i_new[:, None]) # -- scale and update acc -- acc_scale = l_i * 0 + alpha # workaround some compiler bug acc *= acc_scale[:, None] acc += tl.dot(p.to(dtype), v) # -- update m_i and l_i -- l_i = l_i * alpha + tl.sum(p, 1) m_i = m_i_new # update pointers K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N)) V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0)) # write back O acc = tl.where(m_mask, acc / l_i[:, None], 0.0) O_block_ptr = tl.make_block_ptr( base=Out + qo_offset, shape=(N_CTX, BLOCK_DMODEL), strides=(stride_om, stride_ok), offsets=(start_m * BLOCK_M, 0), block_shape=(BLOCK_M, BLOCK_DMODEL), order=(1, 0) ) tl.store(O_block_ptr, acc.to(dtype)) def triton_dense_forward(q, k, v, seqlens, sm_scale, block_size_M=128, block_size_N=64) -> torch.Tensor: # shape constraints Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] assert Lq == Lk and Lk == Lv assert Lk in {16, 32, 64, 128} o = torch.zeros_like(q) grid = (triton.cdiv(q.shape[2], block_size_M), q.shape[0] * q.shape[1], 1) num_warps = 4 if Lk <= 64 else 8 # 4 dtype = tl.bfloat16 if q.dtype == torch.bfloat16 else tl.float16 triton_dense_fwd_kernel[grid]( q, k, v, seqlens, sm_scale, o, q.stride(0), q.stride(1), q.stride(2), q.stride(3), k.stride(0), k.stride(1), k.stride(2), k.stride(3), v.stride(0), v.stride(1), v.stride(2), v.stride(3), o.stride(0), o.stride(1), o.stride(2), o.stride(3), q.shape[0], q.shape[1], q.shape[2], BLOCK_M=block_size_M, BLOCK_N=block_size_N, BLOCK_DMODEL=Lk, dtype=dtype, num_warps=num_warps, num_stages=4, ) return o def flash_attn_forward(q, k, v, seqlens, sm_scale, context_size) -> torch.Tensor: return flash_attn_varlen_func( q, k, v, cu_seqlens_q=seqlens, cu_seqlens_k=seqlens, max_seqlen_q=context_size, max_seqlen_k=context_size, dropout_p=0.0, softmax_scale=sm_scale, causal=True, ) def torch_forward( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, mask: torch.Tensor, sm_scale: float, ) -> torch.Tensor: p = torch.einsum(f'bhmk, bhnk -> bhmn', query, key) * sm_scale p = p.where(mask, -torch.inf) p_max = p.max(-1, keepdim=True).values p_max = torch.where(p_max < 0, 0.0, p_max) p_exp = torch.exp(p - p_max) s = p_exp / (p_exp.sum(-1, keepdim=True) + 1e-6) out = torch.einsum(f'bhmn, bhnk -> bhmk', s, value) return out def profile(fn, total_flops, tag, warmup=25, rep=100): ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep) gflops = total_flops / ms * 1e-9 print(f'{tag}: {ms:.3f} ms | {gflops:.3f} GFLOP/s') def test_flash_attention( query=None, key=None, value=None, seqlens=None, vertical_indexes=None, slash_indexes=None, dtype=torch.float16, device="cuda", torch_test=True, batch_size=4, num_heads=32, context_size=2048, head_dim=128, nnz_v=100, nnz_s=10, block_size_M=64, block_size_N=64, ): print('========================================') if query is None and key is None and value is None: q = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device) k = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device) v = torch.randn((batch_size, num_heads, context_size, head_dim), dtype=dtype, device=device) else: q = torch.tensor(query, dtype=dtype, device=device) k = torch.tensor(key, dtype=dtype, device=device) v = torch.tensor(value, dtype=dtype, device=device) batch_size, num_heads, context_size, head_dim = q.shape print(f'BATCH={batch_size}, N_CTX={context_size}, N_HEADS={num_heads}, D_HEAD={head_dim}') if seqlens is None: seqlens = torch.randint(context_size // 2, context_size, (batch_size, ), dtype=torch.int32, device=device) else: seqlens = torch.tensor(seqlens, dtype=torch.int32, device=device) print(seqlens) dense_mask_nnz = seqlens.to(torch.float32).square().sum().item() * num_heads / 2 sm_scale = head_dim ** -0.5 if torch_test: causal_mask = make_causal_mask(seqlens, device, context_size) ref_o_dense = torch_forward(q, k, v, causal_mask, sm_scale) if vertical_indexes is None or slash_indexes is None: vertical_indexes = torch.stack([ torch.stack([ torch.randperm(seqlen, dtype=torch.int32, device=device)[:nnz_v].sort(descending=False)[0] for _ in range(num_heads) ]) for seqlen in seqlens ]) slash_indexes = torch.concatenate([ torch.stack([ torch.stack([ torch.randperm(seqlen - 1, dtype=torch.int32, device=device)[:nnz_s - 1].sort(descending=True)[0] + 1 for _ in range(num_heads) ]) for seqlen in seqlens ]), torch.zeros((batch_size, num_heads, 1), dtype=torch.int32, device=device) ], dim=-1) pycuda_build_index_fn = lambda: pycuda_build_index( seqlens, vertical_indexes, slash_indexes, context_size, block_size_M, block_size_N ) indexes = pycuda_build_index_fn() block_count, block_offset, column_count, column_index = indexes if torch_test: block_count_ref, block_offset_ref, column_count_ref, column_index_ref = torch_build_index( seqlens, vertical_indexes, slash_indexes, context_size, block_size_M, block_size_N ) torch.testing.assert_close(block_count_ref, block_count) torch.testing.assert_close(block_offset_ref, block_offset) torch.testing.assert_close(column_count_ref, column_count) torch.testing.assert_close(column_index_ref, column_index) sparse_mask_nnz = column_count.to(torch.float64).sum().item() * block_size_M + \ block_count.to(torch.float64).sum().item() * block_size_M * block_size_N print(f'block mask sparsity: {1 - sparse_mask_nnz / dense_mask_nnz}') pycuda_build_index_fn = lambda: pycuda_build_index( seqlens, vertical_indexes, slash_indexes, context_size, block_size_M, block_size_N ) profile(pycuda_build_index_fn, 0., 'pycuda-index') if torch_test: finegrained_mask = make_finegrained_mask(vertical_indexes, slash_indexes, causal_mask, device) block_mask = make_block_mask(*indexes, seqlens, causal_mask, device, block_size_M, block_size_N) plot_mask(finegrained_mask, 'mask.png', 0, 0) plot_mask(block_mask, 'mask-1.png', 0, 0) ref_o_sparse = torch_forward(q, k, v, block_mask, sm_scale) triton_dense_fn = lambda: triton_dense_forward(q, k, v, seqlens, sm_scale) output_triton_dense = triton_dense_fn() if torch_test: # Note: not correct for context_size % block_size_M != 0 torch.testing.assert_close(output_triton_dense, ref_o_dense, atol=1e-2, rtol=0) profile(triton_dense_fn, 2. * head_dim * dense_mask_nnz, 'triton-dense') triton_sparse_fn = lambda: triton_sparse_forward(q, k, v, seqlens, *indexes, sm_scale, block_size_M, block_size_N) output_triton_sparse = triton_sparse_fn() if torch_test: torch.testing.assert_close(output_triton_sparse, ref_o_sparse, atol=1e-2, rtol=0) profile(triton_sparse_fn, 2. * head_dim * sparse_mask_nnz, 'triton-sparse') q = q.swapaxes(1, 2).contiguous() k = k.swapaxes(1, 2).contiguous() v = v.swapaxes(1, 2).contiguous() q = torch.concatenate([q[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)]) k = torch.concatenate([k[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)]) v = torch.concatenate([v[i, :seqlen, :, :] for i, seqlen in enumerate(seqlens)]) seqlens = torch.nn.functional.pad(torch.cumsum(seqlens, dim=0, dtype=torch.int32), (1, 0)) flash_fn = lambda: flash_attn_forward(q, k, v, seqlens, sm_scale, context_size) output_flash = flash_fn() output_flash = torch.stack([ torch.nn.functional.pad( output_flash[seqlens[i]:seqlens[i + 1], :, :], (0, 0, 0, 0, 0, context_size + seqlens[i] - seqlens[i + 1]) ) for i in range(batch_size) ]).swapaxes(1, 2).contiguous() if torch_test: torch.testing.assert_close(output_flash, ref_o_dense, atol=1e-2, rtol=0) profile(flash_fn, 2. * head_dim * dense_mask_nnz, 'flash-dense') print('========================================\n') if torch_test and sparse_mask_nnz >= dense_mask_nnz: torch.testing.assert_close(output_flash, output_triton_sparse, atol=1e-2, rtol=0) def pit_sparse_flash_attention_forward( query: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] key: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] value: torch.Tensor, # [BATCH, N_HEADS, N_CTX, D_HEAD] v_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_V] s_idx: torch.Tensor, # [BATCH, N_HEADS, NNZ_S] block_size_M: int = 64, block_size_N: int = 64, ): batch_size, num_heads, context_size, head_dim = query.shape pad = block_size_M - (context_size & (block_size_M - 1)) query = torch.nn.functional.pad(query, [0, 0, 0, pad, 0, 0, 0, 0]) key = torch.nn.functional.pad(key, [0, 0, 0, pad, 0, 0, 0, 0]) value = torch.nn.functional.pad(value, [0, 0, 0, pad, 0, 0, 0, 0]) if head_dim not in [16, 32, 64, 128, 256, 512]: target_dim = 2 ** math.ceil(math.log2(head_dim)) - head_dim query = torch.nn.functional.pad(query, [0, target_dim, 0, 0, 0, 0, 0, 0]) key = torch.nn.functional.pad(key, [0, target_dim, 0, 0, 0, 0, 0, 0]) value = torch.nn.functional.pad(value, [0, target_dim, 0, 0, 0, 0, 0, 0]) v_idx = v_idx.to(torch.int32).reshape((batch_size, num_heads, -1)).sort(dim=-1, descending=False)[0] s_idx = s_idx.to(torch.int32).reshape((batch_size, num_heads, -1)).sort(dim=-1, descending=True)[0] seqlens = torch.tensor([context_size], dtype=torch.int32, device=query.device) sm_scale = head_dim ** -0.5 block_count, block_offset, column_count, column_index = pycuda_build_index( seqlens, v_idx, s_idx, context_size, block_size_M, block_size_N, ) # if context_size > 700000: # import ipdb; ipdb.set_trace() # dense_mask_nnz = seqlens.to(torch.float32).square().sum().item() * num_heads / 2 # sparse_mask_nnz = column_count.to(torch.float64).sum().item() * block_size_M + \ # block_count.to(torch.float64).sum().item() * block_size_M * block_size_N # print(f'block mask sparsity: {1 - sparse_mask_nnz / dense_mask_nnz}') out = triton_sparse_forward( query, key, value, seqlens, block_count, block_offset, column_count, column_index, sm_scale, block_size_M, block_size_N, ) return out[..., :context_size, :head_dim]