Spaces:
Running
Running
nguyenbh
commited on
Commit
·
29a4795
1
Parent(s):
38ff03d
Init
Browse files- app.py +108 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
|
6 |
+
|
7 |
+
hf_token = os.getenv("YOUR_HF_TOKEN")
|
8 |
+
|
9 |
+
# Load model and tokenizer
|
10 |
+
print("Loading model and tokenizer...")
|
11 |
+
model_path = "microsoft/Phi-4-mini-instruct" # Can be changed to local path "./Phi-4-Mini-Instruct"
|
12 |
+
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
14 |
+
model_path,
|
15 |
+
padding_side="left",
|
16 |
+
token=hf_token,
|
17 |
+
trust_remote_code=True
|
18 |
+
)
|
19 |
+
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
model_path,
|
22 |
+
device_map="auto",
|
23 |
+
attn_implementation="flash_attention_2",
|
24 |
+
torch_dtype="auto",
|
25 |
+
token=hf_token,
|
26 |
+
trust_remote_code=True
|
27 |
+
)
|
28 |
+
|
29 |
+
# Create pipeline for easier inference
|
30 |
+
pipe = pipeline(
|
31 |
+
"text-generation",
|
32 |
+
model=model,
|
33 |
+
tokenizer=tokenizer,
|
34 |
+
)
|
35 |
+
|
36 |
+
print("Model and tokenizer loaded successfully!")
|
37 |
+
|
38 |
+
# Format chat history to messages format
|
39 |
+
def format_chat_history(message, history):
|
40 |
+
messages = [
|
41 |
+
{"role": "system", "content": "You are a helpful AI assistant."}
|
42 |
+
]
|
43 |
+
|
44 |
+
# Add chat history
|
45 |
+
for user_msg, assistant_msg in history:
|
46 |
+
messages.append({"role": "user", "content": user_msg})
|
47 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
48 |
+
|
49 |
+
# Add current message
|
50 |
+
messages.append({"role": "user", "content": message})
|
51 |
+
|
52 |
+
return messages
|
53 |
+
|
54 |
+
# Streaming response generator
|
55 |
+
def predict(message, history):
|
56 |
+
messages = format_chat_history(message, history)
|
57 |
+
|
58 |
+
generation_args = {
|
59 |
+
"max_new_tokens": 1024,
|
60 |
+
"return_full_text": False,
|
61 |
+
"temperature": 0.001,
|
62 |
+
"top_p": 1.0,
|
63 |
+
"do_sample": True,
|
64 |
+
"streamer": None, # Will be set in the generator
|
65 |
+
}
|
66 |
+
|
67 |
+
# Initialize an empty response
|
68 |
+
partial_message = ""
|
69 |
+
history_with_message = history + [[message, partial_message]]
|
70 |
+
|
71 |
+
# Create a TextIteratorStreamer for streaming generation
|
72 |
+
from transformers import TextIteratorStreamer
|
73 |
+
from threading import Thread
|
74 |
+
|
75 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
76 |
+
generation_args["streamer"] = streamer
|
77 |
+
|
78 |
+
# Start a separate thread for generation
|
79 |
+
thread = Thread(target=pipe, args=(messages,), kwargs=generation_args)
|
80 |
+
thread.start()
|
81 |
+
|
82 |
+
# Stream the response
|
83 |
+
for new_text in streamer:
|
84 |
+
partial_message += new_text
|
85 |
+
yield history + [[message, partial_message]]
|
86 |
+
|
87 |
+
# Create the Gradio interface
|
88 |
+
css = """
|
89 |
+
.chatbot-container {max-width: 800px; margin: auto;}
|
90 |
+
.chat-header {text-align: center; margin-bottom: 20px;}
|
91 |
+
"""
|
92 |
+
|
93 |
+
with gr.Blocks(css=css) as demo:
|
94 |
+
gr.HTML("<div class='chat-header'><h1>Phi-4 Mini Chatbot</h1></div>")
|
95 |
+
|
96 |
+
with gr.Column(elem_classes="chatbot-container"):
|
97 |
+
chatbot = gr.Chatbot(height=400)
|
98 |
+
msg = gr.Textbox(placeholder="Type your message here...", label="Input")
|
99 |
+
clear = gr.Button("Clear Conversation")
|
100 |
+
|
101 |
+
msg.submit(predict, [msg, chatbot], [chatbot], queue=True, api_name="chat").then(
|
102 |
+
lambda: "", None, [msg]
|
103 |
+
)
|
104 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
105 |
+
""")
|
106 |
+
|
107 |
+
# Launch the app
|
108 |
+
demo.launch(share=True) # Set share=False if you don't want a public link
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
transformers==4.49.0
|
2 |
+
gradio==5.14.0
|