LanHarmony commited on
Commit
1daafb4
·
1 Parent(s): 0931081

introduce control net

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .idea/inspectionProfiles/profiles_settings.xml +6 -0
  2. ControlNet/annotator/canny/__init__.py +6 -0
  3. ControlNet/annotator/ckpts/body_pose_model.pth +3 -0
  4. ControlNet/annotator/ckpts/ckpts.txt +1 -0
  5. ControlNet/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt +3 -0
  6. ControlNet/annotator/ckpts/hand_pose_model.pth +3 -0
  7. ControlNet/annotator/ckpts/mlsd_large_512_fp32.pth +3 -0
  8. ControlNet/annotator/ckpts/network-bsds500.pth +3 -0
  9. ControlNet/annotator/ckpts/upernet_global_small.pth +3 -0
  10. ControlNet/annotator/hed/__init__.py +132 -0
  11. ControlNet/annotator/midas/__init__.py +38 -0
  12. ControlNet/annotator/midas/api.py +169 -0
  13. ControlNet/annotator/midas/midas/__init__.py +0 -0
  14. ControlNet/annotator/midas/midas/base_model.py +16 -0
  15. ControlNet/annotator/midas/midas/blocks.py +342 -0
  16. ControlNet/annotator/midas/midas/dpt_depth.py +109 -0
  17. ControlNet/annotator/midas/midas/midas_net.py +76 -0
  18. ControlNet/annotator/midas/midas/midas_net_custom.py +128 -0
  19. ControlNet/annotator/midas/midas/transforms.py +234 -0
  20. ControlNet/annotator/midas/midas/vit.py +491 -0
  21. ControlNet/annotator/midas/utils.py +189 -0
  22. ControlNet/annotator/mlsd/__init__.py +39 -0
  23. ControlNet/annotator/mlsd/models/mbv2_mlsd_large.py +292 -0
  24. ControlNet/annotator/mlsd/models/mbv2_mlsd_tiny.py +275 -0
  25. ControlNet/annotator/mlsd/utils.py +580 -0
  26. ControlNet/annotator/openpose/__init__.py +44 -0
  27. ControlNet/annotator/openpose/body.py +219 -0
  28. ControlNet/annotator/openpose/hand.py +86 -0
  29. ControlNet/annotator/openpose/model.py +219 -0
  30. ControlNet/annotator/openpose/util.py +164 -0
  31. ControlNet/annotator/uniformer/__init__.py +23 -0
  32. ControlNet/annotator/uniformer/configs/_base_/datasets/ade20k.py +54 -0
  33. ControlNet/annotator/uniformer/configs/_base_/datasets/chase_db1.py +59 -0
  34. ControlNet/annotator/uniformer/configs/_base_/datasets/cityscapes.py +54 -0
  35. ControlNet/annotator/uniformer/configs/_base_/datasets/cityscapes_769x769.py +35 -0
  36. ControlNet/annotator/uniformer/configs/_base_/datasets/drive.py +59 -0
  37. ControlNet/annotator/uniformer/configs/_base_/datasets/hrf.py +59 -0
  38. ControlNet/annotator/uniformer/configs/_base_/datasets/pascal_context.py +60 -0
  39. ControlNet/annotator/uniformer/configs/_base_/datasets/pascal_context_59.py +60 -0
  40. ControlNet/annotator/uniformer/configs/_base_/datasets/pascal_voc12.py +57 -0
  41. ControlNet/annotator/uniformer/configs/_base_/datasets/pascal_voc12_aug.py +9 -0
  42. ControlNet/annotator/uniformer/configs/_base_/datasets/stare.py +59 -0
  43. ControlNet/annotator/uniformer/configs/_base_/default_runtime.py +14 -0
  44. ControlNet/annotator/uniformer/configs/_base_/models/ann_r50-d8.py +46 -0
  45. ControlNet/annotator/uniformer/configs/_base_/models/apcnet_r50-d8.py +44 -0
  46. ControlNet/annotator/uniformer/configs/_base_/models/ccnet_r50-d8.py +44 -0
  47. ControlNet/annotator/uniformer/configs/_base_/models/cgnet.py +35 -0
  48. ControlNet/annotator/uniformer/configs/_base_/models/danet_r50-d8.py +44 -0
  49. ControlNet/annotator/uniformer/configs/_base_/models/deeplabv3_r50-d8.py +44 -0
  50. ControlNet/annotator/uniformer/configs/_base_/models/deeplabv3_unet_s5-d16.py +50 -0
.idea/inspectionProfiles/profiles_settings.xml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ <component name="InspectionProjectProfileManager">
2
+ <settings>
3
+ <option name="USE_PROJECT_PROFILE" value="false" />
4
+ <version value="1.0" />
5
+ </settings>
6
+ </component>
ControlNet/annotator/canny/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ import cv2
2
+
3
+
4
+ class CannyDetector:
5
+ def __call__(self, img, low_threshold, high_threshold):
6
+ return cv2.Canny(img, low_threshold, high_threshold)
ControlNet/annotator/ckpts/body_pose_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25a948c16078b0f08e236bda51a385d855ef4c153598947c28c0d47ed94bb746
3
+ size 209267595
ControlNet/annotator/ckpts/ckpts.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ Weights here.
ControlNet/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:501f0c75b3bca7daec6b3682c5054c09b366765aef6fa3a09d03a5cb4b230853
3
+ size 492757791
ControlNet/annotator/ckpts/hand_pose_model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76b00d1750901abd07b9f9d8c98cc3385b8fe834a26d4b4f0aad439e75fc600
3
+ size 147341049
ControlNet/annotator/ckpts/mlsd_large_512_fp32.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5696f168eb2c30d4374bbfd45436f7415bb4d88da29bea97eea0101520fba082
3
+ size 6341481
ControlNet/annotator/ckpts/network-bsds500.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58a858782f5fa3e0ca3dc92e7a1a609add93987d77be3dfa54f8f8419d881a94
3
+ size 58871680
ControlNet/annotator/ckpts/upernet_global_small.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bebfa1264c10381e389d8065056baaadbdadee8ddc6e36770d1ec339dc84d970
3
+ size 206313115
ControlNet/annotator/hed/__init__.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import os
4
+ import torch
5
+ from einops import rearrange
6
+ from annotator.util import annotator_ckpts_path
7
+
8
+
9
+ class Network(torch.nn.Module):
10
+ def __init__(self, model_path):
11
+ super().__init__()
12
+
13
+ self.netVggOne = torch.nn.Sequential(
14
+ torch.nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1),
15
+ torch.nn.ReLU(inplace=False),
16
+ torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1),
17
+ torch.nn.ReLU(inplace=False)
18
+ )
19
+
20
+ self.netVggTwo = torch.nn.Sequential(
21
+ torch.nn.MaxPool2d(kernel_size=2, stride=2),
22
+ torch.nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
23
+ torch.nn.ReLU(inplace=False),
24
+ torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1),
25
+ torch.nn.ReLU(inplace=False)
26
+ )
27
+
28
+ self.netVggThr = torch.nn.Sequential(
29
+ torch.nn.MaxPool2d(kernel_size=2, stride=2),
30
+ torch.nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1),
31
+ torch.nn.ReLU(inplace=False),
32
+ torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
33
+ torch.nn.ReLU(inplace=False),
34
+ torch.nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1),
35
+ torch.nn.ReLU(inplace=False)
36
+ )
37
+
38
+ self.netVggFou = torch.nn.Sequential(
39
+ torch.nn.MaxPool2d(kernel_size=2, stride=2),
40
+ torch.nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1),
41
+ torch.nn.ReLU(inplace=False),
42
+ torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
43
+ torch.nn.ReLU(inplace=False),
44
+ torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
45
+ torch.nn.ReLU(inplace=False)
46
+ )
47
+
48
+ self.netVggFiv = torch.nn.Sequential(
49
+ torch.nn.MaxPool2d(kernel_size=2, stride=2),
50
+ torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
51
+ torch.nn.ReLU(inplace=False),
52
+ torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
53
+ torch.nn.ReLU(inplace=False),
54
+ torch.nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1),
55
+ torch.nn.ReLU(inplace=False)
56
+ )
57
+
58
+ self.netScoreOne = torch.nn.Conv2d(in_channels=64, out_channels=1, kernel_size=1, stride=1, padding=0)
59
+ self.netScoreTwo = torch.nn.Conv2d(in_channels=128, out_channels=1, kernel_size=1, stride=1, padding=0)
60
+ self.netScoreThr = torch.nn.Conv2d(in_channels=256, out_channels=1, kernel_size=1, stride=1, padding=0)
61
+ self.netScoreFou = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0)
62
+ self.netScoreFiv = torch.nn.Conv2d(in_channels=512, out_channels=1, kernel_size=1, stride=1, padding=0)
63
+
64
+ self.netCombine = torch.nn.Sequential(
65
+ torch.nn.Conv2d(in_channels=5, out_channels=1, kernel_size=1, stride=1, padding=0),
66
+ torch.nn.Sigmoid()
67
+ )
68
+
69
+ self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load(model_path).items()})
70
+
71
+ def forward(self, tenInput):
72
+ tenInput = tenInput * 255.0
73
+ tenInput = tenInput - torch.tensor(data=[104.00698793, 116.66876762, 122.67891434], dtype=tenInput.dtype, device=tenInput.device).view(1, 3, 1, 1)
74
+
75
+ tenVggOne = self.netVggOne(tenInput)
76
+ tenVggTwo = self.netVggTwo(tenVggOne)
77
+ tenVggThr = self.netVggThr(tenVggTwo)
78
+ tenVggFou = self.netVggFou(tenVggThr)
79
+ tenVggFiv = self.netVggFiv(tenVggFou)
80
+
81
+ tenScoreOne = self.netScoreOne(tenVggOne)
82
+ tenScoreTwo = self.netScoreTwo(tenVggTwo)
83
+ tenScoreThr = self.netScoreThr(tenVggThr)
84
+ tenScoreFou = self.netScoreFou(tenVggFou)
85
+ tenScoreFiv = self.netScoreFiv(tenVggFiv)
86
+
87
+ tenScoreOne = torch.nn.functional.interpolate(input=tenScoreOne, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
88
+ tenScoreTwo = torch.nn.functional.interpolate(input=tenScoreTwo, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
89
+ tenScoreThr = torch.nn.functional.interpolate(input=tenScoreThr, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
90
+ tenScoreFou = torch.nn.functional.interpolate(input=tenScoreFou, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
91
+ tenScoreFiv = torch.nn.functional.interpolate(input=tenScoreFiv, size=(tenInput.shape[2], tenInput.shape[3]), mode='bilinear', align_corners=False)
92
+
93
+ return self.netCombine(torch.cat([ tenScoreOne, tenScoreTwo, tenScoreThr, tenScoreFou, tenScoreFiv ], 1))
94
+
95
+
96
+ class HEDdetector:
97
+ def __init__(self):
98
+ remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/network-bsds500.pth"
99
+ modelpath = os.path.join(annotator_ckpts_path, "network-bsds500.pth")
100
+ if not os.path.exists(modelpath):
101
+ from basicsr.utils.download_util import load_file_from_url
102
+ load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
103
+ self.netNetwork = Network(modelpath).cuda().eval()
104
+
105
+ def __call__(self, input_image):
106
+ assert input_image.ndim == 3
107
+ input_image = input_image[:, :, ::-1].copy()
108
+ with torch.no_grad():
109
+ image_hed = torch.from_numpy(input_image).float().cuda()
110
+ image_hed = image_hed / 255.0
111
+ image_hed = rearrange(image_hed, 'h w c -> 1 c h w')
112
+ edge = self.netNetwork(image_hed)[0]
113
+ edge = (edge.cpu().numpy() * 255.0).clip(0, 255).astype(np.uint8)
114
+ return edge[0]
115
+
116
+
117
+ def nms(x, t, s):
118
+ x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
119
+
120
+ f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
121
+ f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
122
+ f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
123
+ f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
124
+
125
+ y = np.zeros_like(x)
126
+
127
+ for f in [f1, f2, f3, f4]:
128
+ np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
129
+
130
+ z = np.zeros_like(y, dtype=np.uint8)
131
+ z[y > t] = 255
132
+ return z
ControlNet/annotator/midas/__init__.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+
5
+ from einops import rearrange
6
+ from .api import MiDaSInference
7
+
8
+
9
+ class MidasDetector:
10
+ def __init__(self):
11
+ self.model = MiDaSInference(model_type="dpt_hybrid").cuda()
12
+
13
+ def __call__(self, input_image, a=np.pi * 2.0, bg_th=0.1):
14
+ assert input_image.ndim == 3
15
+ image_depth = input_image
16
+ with torch.no_grad():
17
+ image_depth = torch.from_numpy(image_depth).float().cuda()
18
+ image_depth = image_depth / 127.5 - 1.0
19
+ image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
20
+ depth = self.model(image_depth)[0]
21
+
22
+ depth_pt = depth.clone()
23
+ depth_pt -= torch.min(depth_pt)
24
+ depth_pt /= torch.max(depth_pt)
25
+ depth_pt = depth_pt.cpu().numpy()
26
+ depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
27
+
28
+ depth_np = depth.cpu().numpy()
29
+ x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3)
30
+ y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3)
31
+ z = np.ones_like(x) * a
32
+ x[depth_pt < bg_th] = 0
33
+ y[depth_pt < bg_th] = 0
34
+ normal = np.stack([x, y, z], axis=2)
35
+ normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5
36
+ normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
37
+
38
+ return depth_image, normal_image
ControlNet/annotator/midas/api.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # based on https://github.com/isl-org/MiDaS
2
+
3
+ import cv2
4
+ import os
5
+ import torch
6
+ import torch.nn as nn
7
+ from torchvision.transforms import Compose
8
+
9
+ from .midas.dpt_depth import DPTDepthModel
10
+ from .midas.midas_net import MidasNet
11
+ from .midas.midas_net_custom import MidasNet_small
12
+ from .midas.transforms import Resize, NormalizeImage, PrepareForNet
13
+ from annotator.util import annotator_ckpts_path
14
+
15
+
16
+ ISL_PATHS = {
17
+ "dpt_large": os.path.join(annotator_ckpts_path, "dpt_large-midas-2f21e586.pt"),
18
+ "dpt_hybrid": os.path.join(annotator_ckpts_path, "dpt_hybrid-midas-501f0c75.pt"),
19
+ "midas_v21": "",
20
+ "midas_v21_small": "",
21
+ }
22
+
23
+ remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt"
24
+
25
+
26
+ def disabled_train(self, mode=True):
27
+ """Overwrite model.train with this function to make sure train/eval mode
28
+ does not change anymore."""
29
+ return self
30
+
31
+
32
+ def load_midas_transform(model_type):
33
+ # https://github.com/isl-org/MiDaS/blob/master/run.py
34
+ # load transform only
35
+ if model_type == "dpt_large": # DPT-Large
36
+ net_w, net_h = 384, 384
37
+ resize_mode = "minimal"
38
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
39
+
40
+ elif model_type == "dpt_hybrid": # DPT-Hybrid
41
+ net_w, net_h = 384, 384
42
+ resize_mode = "minimal"
43
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
44
+
45
+ elif model_type == "midas_v21":
46
+ net_w, net_h = 384, 384
47
+ resize_mode = "upper_bound"
48
+ normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
49
+
50
+ elif model_type == "midas_v21_small":
51
+ net_w, net_h = 256, 256
52
+ resize_mode = "upper_bound"
53
+ normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
54
+
55
+ else:
56
+ assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
57
+
58
+ transform = Compose(
59
+ [
60
+ Resize(
61
+ net_w,
62
+ net_h,
63
+ resize_target=None,
64
+ keep_aspect_ratio=True,
65
+ ensure_multiple_of=32,
66
+ resize_method=resize_mode,
67
+ image_interpolation_method=cv2.INTER_CUBIC,
68
+ ),
69
+ normalization,
70
+ PrepareForNet(),
71
+ ]
72
+ )
73
+
74
+ return transform
75
+
76
+
77
+ def load_model(model_type):
78
+ # https://github.com/isl-org/MiDaS/blob/master/run.py
79
+ # load network
80
+ model_path = ISL_PATHS[model_type]
81
+ if model_type == "dpt_large": # DPT-Large
82
+ model = DPTDepthModel(
83
+ path=model_path,
84
+ backbone="vitl16_384",
85
+ non_negative=True,
86
+ )
87
+ net_w, net_h = 384, 384
88
+ resize_mode = "minimal"
89
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
90
+
91
+ elif model_type == "dpt_hybrid": # DPT-Hybrid
92
+ if not os.path.exists(model_path):
93
+ from basicsr.utils.download_util import load_file_from_url
94
+ load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
95
+
96
+ model = DPTDepthModel(
97
+ path=model_path,
98
+ backbone="vitb_rn50_384",
99
+ non_negative=True,
100
+ )
101
+ net_w, net_h = 384, 384
102
+ resize_mode = "minimal"
103
+ normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
104
+
105
+ elif model_type == "midas_v21":
106
+ model = MidasNet(model_path, non_negative=True)
107
+ net_w, net_h = 384, 384
108
+ resize_mode = "upper_bound"
109
+ normalization = NormalizeImage(
110
+ mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
111
+ )
112
+
113
+ elif model_type == "midas_v21_small":
114
+ model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
115
+ non_negative=True, blocks={'expand': True})
116
+ net_w, net_h = 256, 256
117
+ resize_mode = "upper_bound"
118
+ normalization = NormalizeImage(
119
+ mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
120
+ )
121
+
122
+ else:
123
+ print(f"model_type '{model_type}' not implemented, use: --model_type large")
124
+ assert False
125
+
126
+ transform = Compose(
127
+ [
128
+ Resize(
129
+ net_w,
130
+ net_h,
131
+ resize_target=None,
132
+ keep_aspect_ratio=True,
133
+ ensure_multiple_of=32,
134
+ resize_method=resize_mode,
135
+ image_interpolation_method=cv2.INTER_CUBIC,
136
+ ),
137
+ normalization,
138
+ PrepareForNet(),
139
+ ]
140
+ )
141
+
142
+ return model.eval(), transform
143
+
144
+
145
+ class MiDaSInference(nn.Module):
146
+ MODEL_TYPES_TORCH_HUB = [
147
+ "DPT_Large",
148
+ "DPT_Hybrid",
149
+ "MiDaS_small"
150
+ ]
151
+ MODEL_TYPES_ISL = [
152
+ "dpt_large",
153
+ "dpt_hybrid",
154
+ "midas_v21",
155
+ "midas_v21_small",
156
+ ]
157
+
158
+ def __init__(self, model_type):
159
+ super().__init__()
160
+ assert (model_type in self.MODEL_TYPES_ISL)
161
+ model, _ = load_model(model_type)
162
+ self.model = model
163
+ self.model.train = disabled_train
164
+
165
+ def forward(self, x):
166
+ with torch.no_grad():
167
+ prediction = self.model(x)
168
+ return prediction
169
+
ControlNet/annotator/midas/midas/__init__.py ADDED
File without changes
ControlNet/annotator/midas/midas/base_model.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ class BaseModel(torch.nn.Module):
5
+ def load(self, path):
6
+ """Load model from file.
7
+
8
+ Args:
9
+ path (str): file path
10
+ """
11
+ parameters = torch.load(path, map_location=torch.device('cpu'))
12
+
13
+ if "optimizer" in parameters:
14
+ parameters = parameters["model"]
15
+
16
+ self.load_state_dict(parameters)
ControlNet/annotator/midas/midas/blocks.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from .vit import (
5
+ _make_pretrained_vitb_rn50_384,
6
+ _make_pretrained_vitl16_384,
7
+ _make_pretrained_vitb16_384,
8
+ forward_vit,
9
+ )
10
+
11
+ def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
12
+ if backbone == "vitl16_384":
13
+ pretrained = _make_pretrained_vitl16_384(
14
+ use_pretrained, hooks=hooks, use_readout=use_readout
15
+ )
16
+ scratch = _make_scratch(
17
+ [256, 512, 1024, 1024], features, groups=groups, expand=expand
18
+ ) # ViT-L/16 - 85.0% Top1 (backbone)
19
+ elif backbone == "vitb_rn50_384":
20
+ pretrained = _make_pretrained_vitb_rn50_384(
21
+ use_pretrained,
22
+ hooks=hooks,
23
+ use_vit_only=use_vit_only,
24
+ use_readout=use_readout,
25
+ )
26
+ scratch = _make_scratch(
27
+ [256, 512, 768, 768], features, groups=groups, expand=expand
28
+ ) # ViT-H/16 - 85.0% Top1 (backbone)
29
+ elif backbone == "vitb16_384":
30
+ pretrained = _make_pretrained_vitb16_384(
31
+ use_pretrained, hooks=hooks, use_readout=use_readout
32
+ )
33
+ scratch = _make_scratch(
34
+ [96, 192, 384, 768], features, groups=groups, expand=expand
35
+ ) # ViT-B/16 - 84.6% Top1 (backbone)
36
+ elif backbone == "resnext101_wsl":
37
+ pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
38
+ scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3
39
+ elif backbone == "efficientnet_lite3":
40
+ pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
41
+ scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3
42
+ else:
43
+ print(f"Backbone '{backbone}' not implemented")
44
+ assert False
45
+
46
+ return pretrained, scratch
47
+
48
+
49
+ def _make_scratch(in_shape, out_shape, groups=1, expand=False):
50
+ scratch = nn.Module()
51
+
52
+ out_shape1 = out_shape
53
+ out_shape2 = out_shape
54
+ out_shape3 = out_shape
55
+ out_shape4 = out_shape
56
+ if expand==True:
57
+ out_shape1 = out_shape
58
+ out_shape2 = out_shape*2
59
+ out_shape3 = out_shape*4
60
+ out_shape4 = out_shape*8
61
+
62
+ scratch.layer1_rn = nn.Conv2d(
63
+ in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
64
+ )
65
+ scratch.layer2_rn = nn.Conv2d(
66
+ in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
67
+ )
68
+ scratch.layer3_rn = nn.Conv2d(
69
+ in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
70
+ )
71
+ scratch.layer4_rn = nn.Conv2d(
72
+ in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
73
+ )
74
+
75
+ return scratch
76
+
77
+
78
+ def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
79
+ efficientnet = torch.hub.load(
80
+ "rwightman/gen-efficientnet-pytorch",
81
+ "tf_efficientnet_lite3",
82
+ pretrained=use_pretrained,
83
+ exportable=exportable
84
+ )
85
+ return _make_efficientnet_backbone(efficientnet)
86
+
87
+
88
+ def _make_efficientnet_backbone(effnet):
89
+ pretrained = nn.Module()
90
+
91
+ pretrained.layer1 = nn.Sequential(
92
+ effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
93
+ )
94
+ pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
95
+ pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
96
+ pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
97
+
98
+ return pretrained
99
+
100
+
101
+ def _make_resnet_backbone(resnet):
102
+ pretrained = nn.Module()
103
+ pretrained.layer1 = nn.Sequential(
104
+ resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
105
+ )
106
+
107
+ pretrained.layer2 = resnet.layer2
108
+ pretrained.layer3 = resnet.layer3
109
+ pretrained.layer4 = resnet.layer4
110
+
111
+ return pretrained
112
+
113
+
114
+ def _make_pretrained_resnext101_wsl(use_pretrained):
115
+ resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
116
+ return _make_resnet_backbone(resnet)
117
+
118
+
119
+
120
+ class Interpolate(nn.Module):
121
+ """Interpolation module.
122
+ """
123
+
124
+ def __init__(self, scale_factor, mode, align_corners=False):
125
+ """Init.
126
+
127
+ Args:
128
+ scale_factor (float): scaling
129
+ mode (str): interpolation mode
130
+ """
131
+ super(Interpolate, self).__init__()
132
+
133
+ self.interp = nn.functional.interpolate
134
+ self.scale_factor = scale_factor
135
+ self.mode = mode
136
+ self.align_corners = align_corners
137
+
138
+ def forward(self, x):
139
+ """Forward pass.
140
+
141
+ Args:
142
+ x (tensor): input
143
+
144
+ Returns:
145
+ tensor: interpolated data
146
+ """
147
+
148
+ x = self.interp(
149
+ x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
150
+ )
151
+
152
+ return x
153
+
154
+
155
+ class ResidualConvUnit(nn.Module):
156
+ """Residual convolution module.
157
+ """
158
+
159
+ def __init__(self, features):
160
+ """Init.
161
+
162
+ Args:
163
+ features (int): number of features
164
+ """
165
+ super().__init__()
166
+
167
+ self.conv1 = nn.Conv2d(
168
+ features, features, kernel_size=3, stride=1, padding=1, bias=True
169
+ )
170
+
171
+ self.conv2 = nn.Conv2d(
172
+ features, features, kernel_size=3, stride=1, padding=1, bias=True
173
+ )
174
+
175
+ self.relu = nn.ReLU(inplace=True)
176
+
177
+ def forward(self, x):
178
+ """Forward pass.
179
+
180
+ Args:
181
+ x (tensor): input
182
+
183
+ Returns:
184
+ tensor: output
185
+ """
186
+ out = self.relu(x)
187
+ out = self.conv1(out)
188
+ out = self.relu(out)
189
+ out = self.conv2(out)
190
+
191
+ return out + x
192
+
193
+
194
+ class FeatureFusionBlock(nn.Module):
195
+ """Feature fusion block.
196
+ """
197
+
198
+ def __init__(self, features):
199
+ """Init.
200
+
201
+ Args:
202
+ features (int): number of features
203
+ """
204
+ super(FeatureFusionBlock, self).__init__()
205
+
206
+ self.resConfUnit1 = ResidualConvUnit(features)
207
+ self.resConfUnit2 = ResidualConvUnit(features)
208
+
209
+ def forward(self, *xs):
210
+ """Forward pass.
211
+
212
+ Returns:
213
+ tensor: output
214
+ """
215
+ output = xs[0]
216
+
217
+ if len(xs) == 2:
218
+ output += self.resConfUnit1(xs[1])
219
+
220
+ output = self.resConfUnit2(output)
221
+
222
+ output = nn.functional.interpolate(
223
+ output, scale_factor=2, mode="bilinear", align_corners=True
224
+ )
225
+
226
+ return output
227
+
228
+
229
+
230
+
231
+ class ResidualConvUnit_custom(nn.Module):
232
+ """Residual convolution module.
233
+ """
234
+
235
+ def __init__(self, features, activation, bn):
236
+ """Init.
237
+
238
+ Args:
239
+ features (int): number of features
240
+ """
241
+ super().__init__()
242
+
243
+ self.bn = bn
244
+
245
+ self.groups=1
246
+
247
+ self.conv1 = nn.Conv2d(
248
+ features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
249
+ )
250
+
251
+ self.conv2 = nn.Conv2d(
252
+ features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
253
+ )
254
+
255
+ if self.bn==True:
256
+ self.bn1 = nn.BatchNorm2d(features)
257
+ self.bn2 = nn.BatchNorm2d(features)
258
+
259
+ self.activation = activation
260
+
261
+ self.skip_add = nn.quantized.FloatFunctional()
262
+
263
+ def forward(self, x):
264
+ """Forward pass.
265
+
266
+ Args:
267
+ x (tensor): input
268
+
269
+ Returns:
270
+ tensor: output
271
+ """
272
+
273
+ out = self.activation(x)
274
+ out = self.conv1(out)
275
+ if self.bn==True:
276
+ out = self.bn1(out)
277
+
278
+ out = self.activation(out)
279
+ out = self.conv2(out)
280
+ if self.bn==True:
281
+ out = self.bn2(out)
282
+
283
+ if self.groups > 1:
284
+ out = self.conv_merge(out)
285
+
286
+ return self.skip_add.add(out, x)
287
+
288
+ # return out + x
289
+
290
+
291
+ class FeatureFusionBlock_custom(nn.Module):
292
+ """Feature fusion block.
293
+ """
294
+
295
+ def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
296
+ """Init.
297
+
298
+ Args:
299
+ features (int): number of features
300
+ """
301
+ super(FeatureFusionBlock_custom, self).__init__()
302
+
303
+ self.deconv = deconv
304
+ self.align_corners = align_corners
305
+
306
+ self.groups=1
307
+
308
+ self.expand = expand
309
+ out_features = features
310
+ if self.expand==True:
311
+ out_features = features//2
312
+
313
+ self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
314
+
315
+ self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
316
+ self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
317
+
318
+ self.skip_add = nn.quantized.FloatFunctional()
319
+
320
+ def forward(self, *xs):
321
+ """Forward pass.
322
+
323
+ Returns:
324
+ tensor: output
325
+ """
326
+ output = xs[0]
327
+
328
+ if len(xs) == 2:
329
+ res = self.resConfUnit1(xs[1])
330
+ output = self.skip_add.add(output, res)
331
+ # output += res
332
+
333
+ output = self.resConfUnit2(output)
334
+
335
+ output = nn.functional.interpolate(
336
+ output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
337
+ )
338
+
339
+ output = self.out_conv(output)
340
+
341
+ return output
342
+
ControlNet/annotator/midas/midas/dpt_depth.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .base_model import BaseModel
6
+ from .blocks import (
7
+ FeatureFusionBlock,
8
+ FeatureFusionBlock_custom,
9
+ Interpolate,
10
+ _make_encoder,
11
+ forward_vit,
12
+ )
13
+
14
+
15
+ def _make_fusion_block(features, use_bn):
16
+ return FeatureFusionBlock_custom(
17
+ features,
18
+ nn.ReLU(False),
19
+ deconv=False,
20
+ bn=use_bn,
21
+ expand=False,
22
+ align_corners=True,
23
+ )
24
+
25
+
26
+ class DPT(BaseModel):
27
+ def __init__(
28
+ self,
29
+ head,
30
+ features=256,
31
+ backbone="vitb_rn50_384",
32
+ readout="project",
33
+ channels_last=False,
34
+ use_bn=False,
35
+ ):
36
+
37
+ super(DPT, self).__init__()
38
+
39
+ self.channels_last = channels_last
40
+
41
+ hooks = {
42
+ "vitb_rn50_384": [0, 1, 8, 11],
43
+ "vitb16_384": [2, 5, 8, 11],
44
+ "vitl16_384": [5, 11, 17, 23],
45
+ }
46
+
47
+ # Instantiate backbone and reassemble blocks
48
+ self.pretrained, self.scratch = _make_encoder(
49
+ backbone,
50
+ features,
51
+ False, # Set to true of you want to train from scratch, uses ImageNet weights
52
+ groups=1,
53
+ expand=False,
54
+ exportable=False,
55
+ hooks=hooks[backbone],
56
+ use_readout=readout,
57
+ )
58
+
59
+ self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
60
+ self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
61
+ self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
62
+ self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
63
+
64
+ self.scratch.output_conv = head
65
+
66
+
67
+ def forward(self, x):
68
+ if self.channels_last == True:
69
+ x.contiguous(memory_format=torch.channels_last)
70
+
71
+ layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
72
+
73
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
74
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
75
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
76
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
77
+
78
+ path_4 = self.scratch.refinenet4(layer_4_rn)
79
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
80
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
81
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
82
+
83
+ out = self.scratch.output_conv(path_1)
84
+
85
+ return out
86
+
87
+
88
+ class DPTDepthModel(DPT):
89
+ def __init__(self, path=None, non_negative=True, **kwargs):
90
+ features = kwargs["features"] if "features" in kwargs else 256
91
+
92
+ head = nn.Sequential(
93
+ nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
94
+ Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
95
+ nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
96
+ nn.ReLU(True),
97
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
98
+ nn.ReLU(True) if non_negative else nn.Identity(),
99
+ nn.Identity(),
100
+ )
101
+
102
+ super().__init__(head, **kwargs)
103
+
104
+ if path is not None:
105
+ self.load(path)
106
+
107
+ def forward(self, x):
108
+ return super().forward(x).squeeze(dim=1)
109
+
ControlNet/annotator/midas/midas/midas_net.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
2
+ This file contains code that is adapted from
3
+ https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
4
+ """
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from .base_model import BaseModel
9
+ from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
10
+
11
+
12
+ class MidasNet(BaseModel):
13
+ """Network for monocular depth estimation.
14
+ """
15
+
16
+ def __init__(self, path=None, features=256, non_negative=True):
17
+ """Init.
18
+
19
+ Args:
20
+ path (str, optional): Path to saved model. Defaults to None.
21
+ features (int, optional): Number of features. Defaults to 256.
22
+ backbone (str, optional): Backbone network for encoder. Defaults to resnet50
23
+ """
24
+ print("Loading weights: ", path)
25
+
26
+ super(MidasNet, self).__init__()
27
+
28
+ use_pretrained = False if path is None else True
29
+
30
+ self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
31
+
32
+ self.scratch.refinenet4 = FeatureFusionBlock(features)
33
+ self.scratch.refinenet3 = FeatureFusionBlock(features)
34
+ self.scratch.refinenet2 = FeatureFusionBlock(features)
35
+ self.scratch.refinenet1 = FeatureFusionBlock(features)
36
+
37
+ self.scratch.output_conv = nn.Sequential(
38
+ nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
39
+ Interpolate(scale_factor=2, mode="bilinear"),
40
+ nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
41
+ nn.ReLU(True),
42
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
43
+ nn.ReLU(True) if non_negative else nn.Identity(),
44
+ )
45
+
46
+ if path:
47
+ self.load(path)
48
+
49
+ def forward(self, x):
50
+ """Forward pass.
51
+
52
+ Args:
53
+ x (tensor): input data (image)
54
+
55
+ Returns:
56
+ tensor: depth
57
+ """
58
+
59
+ layer_1 = self.pretrained.layer1(x)
60
+ layer_2 = self.pretrained.layer2(layer_1)
61
+ layer_3 = self.pretrained.layer3(layer_2)
62
+ layer_4 = self.pretrained.layer4(layer_3)
63
+
64
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
65
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
66
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
67
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
68
+
69
+ path_4 = self.scratch.refinenet4(layer_4_rn)
70
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
71
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
72
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
73
+
74
+ out = self.scratch.output_conv(path_1)
75
+
76
+ return torch.squeeze(out, dim=1)
ControlNet/annotator/midas/midas/midas_net_custom.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MidashNet: Network for monocular depth estimation trained by mixing several datasets.
2
+ This file contains code that is adapted from
3
+ https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
4
+ """
5
+ import torch
6
+ import torch.nn as nn
7
+
8
+ from .base_model import BaseModel
9
+ from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
10
+
11
+
12
+ class MidasNet_small(BaseModel):
13
+ """Network for monocular depth estimation.
14
+ """
15
+
16
+ def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
17
+ blocks={'expand': True}):
18
+ """Init.
19
+
20
+ Args:
21
+ path (str, optional): Path to saved model. Defaults to None.
22
+ features (int, optional): Number of features. Defaults to 256.
23
+ backbone (str, optional): Backbone network for encoder. Defaults to resnet50
24
+ """
25
+ print("Loading weights: ", path)
26
+
27
+ super(MidasNet_small, self).__init__()
28
+
29
+ use_pretrained = False if path else True
30
+
31
+ self.channels_last = channels_last
32
+ self.blocks = blocks
33
+ self.backbone = backbone
34
+
35
+ self.groups = 1
36
+
37
+ features1=features
38
+ features2=features
39
+ features3=features
40
+ features4=features
41
+ self.expand = False
42
+ if "expand" in self.blocks and self.blocks['expand'] == True:
43
+ self.expand = True
44
+ features1=features
45
+ features2=features*2
46
+ features3=features*4
47
+ features4=features*8
48
+
49
+ self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
50
+
51
+ self.scratch.activation = nn.ReLU(False)
52
+
53
+ self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
54
+ self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
55
+ self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
56
+ self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
57
+
58
+
59
+ self.scratch.output_conv = nn.Sequential(
60
+ nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
61
+ Interpolate(scale_factor=2, mode="bilinear"),
62
+ nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
63
+ self.scratch.activation,
64
+ nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
65
+ nn.ReLU(True) if non_negative else nn.Identity(),
66
+ nn.Identity(),
67
+ )
68
+
69
+ if path:
70
+ self.load(path)
71
+
72
+
73
+ def forward(self, x):
74
+ """Forward pass.
75
+
76
+ Args:
77
+ x (tensor): input data (image)
78
+
79
+ Returns:
80
+ tensor: depth
81
+ """
82
+ if self.channels_last==True:
83
+ print("self.channels_last = ", self.channels_last)
84
+ x.contiguous(memory_format=torch.channels_last)
85
+
86
+
87
+ layer_1 = self.pretrained.layer1(x)
88
+ layer_2 = self.pretrained.layer2(layer_1)
89
+ layer_3 = self.pretrained.layer3(layer_2)
90
+ layer_4 = self.pretrained.layer4(layer_3)
91
+
92
+ layer_1_rn = self.scratch.layer1_rn(layer_1)
93
+ layer_2_rn = self.scratch.layer2_rn(layer_2)
94
+ layer_3_rn = self.scratch.layer3_rn(layer_3)
95
+ layer_4_rn = self.scratch.layer4_rn(layer_4)
96
+
97
+
98
+ path_4 = self.scratch.refinenet4(layer_4_rn)
99
+ path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
100
+ path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
101
+ path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
102
+
103
+ out = self.scratch.output_conv(path_1)
104
+
105
+ return torch.squeeze(out, dim=1)
106
+
107
+
108
+
109
+ def fuse_model(m):
110
+ prev_previous_type = nn.Identity()
111
+ prev_previous_name = ''
112
+ previous_type = nn.Identity()
113
+ previous_name = ''
114
+ for name, module in m.named_modules():
115
+ if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
116
+ # print("FUSED ", prev_previous_name, previous_name, name)
117
+ torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
118
+ elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
119
+ # print("FUSED ", prev_previous_name, previous_name)
120
+ torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
121
+ # elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
122
+ # print("FUSED ", previous_name, name)
123
+ # torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
124
+
125
+ prev_previous_type = previous_type
126
+ prev_previous_name = previous_name
127
+ previous_type = type(module)
128
+ previous_name = name
ControlNet/annotator/midas/midas/transforms.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import math
4
+
5
+
6
+ def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
7
+ """Rezise the sample to ensure the given size. Keeps aspect ratio.
8
+
9
+ Args:
10
+ sample (dict): sample
11
+ size (tuple): image size
12
+
13
+ Returns:
14
+ tuple: new size
15
+ """
16
+ shape = list(sample["disparity"].shape)
17
+
18
+ if shape[0] >= size[0] and shape[1] >= size[1]:
19
+ return sample
20
+
21
+ scale = [0, 0]
22
+ scale[0] = size[0] / shape[0]
23
+ scale[1] = size[1] / shape[1]
24
+
25
+ scale = max(scale)
26
+
27
+ shape[0] = math.ceil(scale * shape[0])
28
+ shape[1] = math.ceil(scale * shape[1])
29
+
30
+ # resize
31
+ sample["image"] = cv2.resize(
32
+ sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
33
+ )
34
+
35
+ sample["disparity"] = cv2.resize(
36
+ sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
37
+ )
38
+ sample["mask"] = cv2.resize(
39
+ sample["mask"].astype(np.float32),
40
+ tuple(shape[::-1]),
41
+ interpolation=cv2.INTER_NEAREST,
42
+ )
43
+ sample["mask"] = sample["mask"].astype(bool)
44
+
45
+ return tuple(shape)
46
+
47
+
48
+ class Resize(object):
49
+ """Resize sample to given size (width, height).
50
+ """
51
+
52
+ def __init__(
53
+ self,
54
+ width,
55
+ height,
56
+ resize_target=True,
57
+ keep_aspect_ratio=False,
58
+ ensure_multiple_of=1,
59
+ resize_method="lower_bound",
60
+ image_interpolation_method=cv2.INTER_AREA,
61
+ ):
62
+ """Init.
63
+
64
+ Args:
65
+ width (int): desired output width
66
+ height (int): desired output height
67
+ resize_target (bool, optional):
68
+ True: Resize the full sample (image, mask, target).
69
+ False: Resize image only.
70
+ Defaults to True.
71
+ keep_aspect_ratio (bool, optional):
72
+ True: Keep the aspect ratio of the input sample.
73
+ Output sample might not have the given width and height, and
74
+ resize behaviour depends on the parameter 'resize_method'.
75
+ Defaults to False.
76
+ ensure_multiple_of (int, optional):
77
+ Output width and height is constrained to be multiple of this parameter.
78
+ Defaults to 1.
79
+ resize_method (str, optional):
80
+ "lower_bound": Output will be at least as large as the given size.
81
+ "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
82
+ "minimal": Scale as least as possible. (Output size might be smaller than given size.)
83
+ Defaults to "lower_bound".
84
+ """
85
+ self.__width = width
86
+ self.__height = height
87
+
88
+ self.__resize_target = resize_target
89
+ self.__keep_aspect_ratio = keep_aspect_ratio
90
+ self.__multiple_of = ensure_multiple_of
91
+ self.__resize_method = resize_method
92
+ self.__image_interpolation_method = image_interpolation_method
93
+
94
+ def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
95
+ y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
96
+
97
+ if max_val is not None and y > max_val:
98
+ y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
99
+
100
+ if y < min_val:
101
+ y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
102
+
103
+ return y
104
+
105
+ def get_size(self, width, height):
106
+ # determine new height and width
107
+ scale_height = self.__height / height
108
+ scale_width = self.__width / width
109
+
110
+ if self.__keep_aspect_ratio:
111
+ if self.__resize_method == "lower_bound":
112
+ # scale such that output size is lower bound
113
+ if scale_width > scale_height:
114
+ # fit width
115
+ scale_height = scale_width
116
+ else:
117
+ # fit height
118
+ scale_width = scale_height
119
+ elif self.__resize_method == "upper_bound":
120
+ # scale such that output size is upper bound
121
+ if scale_width < scale_height:
122
+ # fit width
123
+ scale_height = scale_width
124
+ else:
125
+ # fit height
126
+ scale_width = scale_height
127
+ elif self.__resize_method == "minimal":
128
+ # scale as least as possbile
129
+ if abs(1 - scale_width) < abs(1 - scale_height):
130
+ # fit width
131
+ scale_height = scale_width
132
+ else:
133
+ # fit height
134
+ scale_width = scale_height
135
+ else:
136
+ raise ValueError(
137
+ f"resize_method {self.__resize_method} not implemented"
138
+ )
139
+
140
+ if self.__resize_method == "lower_bound":
141
+ new_height = self.constrain_to_multiple_of(
142
+ scale_height * height, min_val=self.__height
143
+ )
144
+ new_width = self.constrain_to_multiple_of(
145
+ scale_width * width, min_val=self.__width
146
+ )
147
+ elif self.__resize_method == "upper_bound":
148
+ new_height = self.constrain_to_multiple_of(
149
+ scale_height * height, max_val=self.__height
150
+ )
151
+ new_width = self.constrain_to_multiple_of(
152
+ scale_width * width, max_val=self.__width
153
+ )
154
+ elif self.__resize_method == "minimal":
155
+ new_height = self.constrain_to_multiple_of(scale_height * height)
156
+ new_width = self.constrain_to_multiple_of(scale_width * width)
157
+ else:
158
+ raise ValueError(f"resize_method {self.__resize_method} not implemented")
159
+
160
+ return (new_width, new_height)
161
+
162
+ def __call__(self, sample):
163
+ width, height = self.get_size(
164
+ sample["image"].shape[1], sample["image"].shape[0]
165
+ )
166
+
167
+ # resize sample
168
+ sample["image"] = cv2.resize(
169
+ sample["image"],
170
+ (width, height),
171
+ interpolation=self.__image_interpolation_method,
172
+ )
173
+
174
+ if self.__resize_target:
175
+ if "disparity" in sample:
176
+ sample["disparity"] = cv2.resize(
177
+ sample["disparity"],
178
+ (width, height),
179
+ interpolation=cv2.INTER_NEAREST,
180
+ )
181
+
182
+ if "depth" in sample:
183
+ sample["depth"] = cv2.resize(
184
+ sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
185
+ )
186
+
187
+ sample["mask"] = cv2.resize(
188
+ sample["mask"].astype(np.float32),
189
+ (width, height),
190
+ interpolation=cv2.INTER_NEAREST,
191
+ )
192
+ sample["mask"] = sample["mask"].astype(bool)
193
+
194
+ return sample
195
+
196
+
197
+ class NormalizeImage(object):
198
+ """Normlize image by given mean and std.
199
+ """
200
+
201
+ def __init__(self, mean, std):
202
+ self.__mean = mean
203
+ self.__std = std
204
+
205
+ def __call__(self, sample):
206
+ sample["image"] = (sample["image"] - self.__mean) / self.__std
207
+
208
+ return sample
209
+
210
+
211
+ class PrepareForNet(object):
212
+ """Prepare sample for usage as network input.
213
+ """
214
+
215
+ def __init__(self):
216
+ pass
217
+
218
+ def __call__(self, sample):
219
+ image = np.transpose(sample["image"], (2, 0, 1))
220
+ sample["image"] = np.ascontiguousarray(image).astype(np.float32)
221
+
222
+ if "mask" in sample:
223
+ sample["mask"] = sample["mask"].astype(np.float32)
224
+ sample["mask"] = np.ascontiguousarray(sample["mask"])
225
+
226
+ if "disparity" in sample:
227
+ disparity = sample["disparity"].astype(np.float32)
228
+ sample["disparity"] = np.ascontiguousarray(disparity)
229
+
230
+ if "depth" in sample:
231
+ depth = sample["depth"].astype(np.float32)
232
+ sample["depth"] = np.ascontiguousarray(depth)
233
+
234
+ return sample
ControlNet/annotator/midas/midas/vit.py ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import timm
4
+ import types
5
+ import math
6
+ import torch.nn.functional as F
7
+
8
+
9
+ class Slice(nn.Module):
10
+ def __init__(self, start_index=1):
11
+ super(Slice, self).__init__()
12
+ self.start_index = start_index
13
+
14
+ def forward(self, x):
15
+ return x[:, self.start_index :]
16
+
17
+
18
+ class AddReadout(nn.Module):
19
+ def __init__(self, start_index=1):
20
+ super(AddReadout, self).__init__()
21
+ self.start_index = start_index
22
+
23
+ def forward(self, x):
24
+ if self.start_index == 2:
25
+ readout = (x[:, 0] + x[:, 1]) / 2
26
+ else:
27
+ readout = x[:, 0]
28
+ return x[:, self.start_index :] + readout.unsqueeze(1)
29
+
30
+
31
+ class ProjectReadout(nn.Module):
32
+ def __init__(self, in_features, start_index=1):
33
+ super(ProjectReadout, self).__init__()
34
+ self.start_index = start_index
35
+
36
+ self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
37
+
38
+ def forward(self, x):
39
+ readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
40
+ features = torch.cat((x[:, self.start_index :], readout), -1)
41
+
42
+ return self.project(features)
43
+
44
+
45
+ class Transpose(nn.Module):
46
+ def __init__(self, dim0, dim1):
47
+ super(Transpose, self).__init__()
48
+ self.dim0 = dim0
49
+ self.dim1 = dim1
50
+
51
+ def forward(self, x):
52
+ x = x.transpose(self.dim0, self.dim1)
53
+ return x
54
+
55
+
56
+ def forward_vit(pretrained, x):
57
+ b, c, h, w = x.shape
58
+
59
+ glob = pretrained.model.forward_flex(x)
60
+
61
+ layer_1 = pretrained.activations["1"]
62
+ layer_2 = pretrained.activations["2"]
63
+ layer_3 = pretrained.activations["3"]
64
+ layer_4 = pretrained.activations["4"]
65
+
66
+ layer_1 = pretrained.act_postprocess1[0:2](layer_1)
67
+ layer_2 = pretrained.act_postprocess2[0:2](layer_2)
68
+ layer_3 = pretrained.act_postprocess3[0:2](layer_3)
69
+ layer_4 = pretrained.act_postprocess4[0:2](layer_4)
70
+
71
+ unflatten = nn.Sequential(
72
+ nn.Unflatten(
73
+ 2,
74
+ torch.Size(
75
+ [
76
+ h // pretrained.model.patch_size[1],
77
+ w // pretrained.model.patch_size[0],
78
+ ]
79
+ ),
80
+ )
81
+ )
82
+
83
+ if layer_1.ndim == 3:
84
+ layer_1 = unflatten(layer_1)
85
+ if layer_2.ndim == 3:
86
+ layer_2 = unflatten(layer_2)
87
+ if layer_3.ndim == 3:
88
+ layer_3 = unflatten(layer_3)
89
+ if layer_4.ndim == 3:
90
+ layer_4 = unflatten(layer_4)
91
+
92
+ layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
93
+ layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
94
+ layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
95
+ layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
96
+
97
+ return layer_1, layer_2, layer_3, layer_4
98
+
99
+
100
+ def _resize_pos_embed(self, posemb, gs_h, gs_w):
101
+ posemb_tok, posemb_grid = (
102
+ posemb[:, : self.start_index],
103
+ posemb[0, self.start_index :],
104
+ )
105
+
106
+ gs_old = int(math.sqrt(len(posemb_grid)))
107
+
108
+ posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
109
+ posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
110
+ posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
111
+
112
+ posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
113
+
114
+ return posemb
115
+
116
+
117
+ def forward_flex(self, x):
118
+ b, c, h, w = x.shape
119
+
120
+ pos_embed = self._resize_pos_embed(
121
+ self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
122
+ )
123
+
124
+ B = x.shape[0]
125
+
126
+ if hasattr(self.patch_embed, "backbone"):
127
+ x = self.patch_embed.backbone(x)
128
+ if isinstance(x, (list, tuple)):
129
+ x = x[-1] # last feature if backbone outputs list/tuple of features
130
+
131
+ x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
132
+
133
+ if getattr(self, "dist_token", None) is not None:
134
+ cls_tokens = self.cls_token.expand(
135
+ B, -1, -1
136
+ ) # stole cls_tokens impl from Phil Wang, thanks
137
+ dist_token = self.dist_token.expand(B, -1, -1)
138
+ x = torch.cat((cls_tokens, dist_token, x), dim=1)
139
+ else:
140
+ cls_tokens = self.cls_token.expand(
141
+ B, -1, -1
142
+ ) # stole cls_tokens impl from Phil Wang, thanks
143
+ x = torch.cat((cls_tokens, x), dim=1)
144
+
145
+ x = x + pos_embed
146
+ x = self.pos_drop(x)
147
+
148
+ for blk in self.blocks:
149
+ x = blk(x)
150
+
151
+ x = self.norm(x)
152
+
153
+ return x
154
+
155
+
156
+ activations = {}
157
+
158
+
159
+ def get_activation(name):
160
+ def hook(model, input, output):
161
+ activations[name] = output
162
+
163
+ return hook
164
+
165
+
166
+ def get_readout_oper(vit_features, features, use_readout, start_index=1):
167
+ if use_readout == "ignore":
168
+ readout_oper = [Slice(start_index)] * len(features)
169
+ elif use_readout == "add":
170
+ readout_oper = [AddReadout(start_index)] * len(features)
171
+ elif use_readout == "project":
172
+ readout_oper = [
173
+ ProjectReadout(vit_features, start_index) for out_feat in features
174
+ ]
175
+ else:
176
+ assert (
177
+ False
178
+ ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
179
+
180
+ return readout_oper
181
+
182
+
183
+ def _make_vit_b16_backbone(
184
+ model,
185
+ features=[96, 192, 384, 768],
186
+ size=[384, 384],
187
+ hooks=[2, 5, 8, 11],
188
+ vit_features=768,
189
+ use_readout="ignore",
190
+ start_index=1,
191
+ ):
192
+ pretrained = nn.Module()
193
+
194
+ pretrained.model = model
195
+ pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
196
+ pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
197
+ pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
198
+ pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
199
+
200
+ pretrained.activations = activations
201
+
202
+ readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
203
+
204
+ # 32, 48, 136, 384
205
+ pretrained.act_postprocess1 = nn.Sequential(
206
+ readout_oper[0],
207
+ Transpose(1, 2),
208
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
209
+ nn.Conv2d(
210
+ in_channels=vit_features,
211
+ out_channels=features[0],
212
+ kernel_size=1,
213
+ stride=1,
214
+ padding=0,
215
+ ),
216
+ nn.ConvTranspose2d(
217
+ in_channels=features[0],
218
+ out_channels=features[0],
219
+ kernel_size=4,
220
+ stride=4,
221
+ padding=0,
222
+ bias=True,
223
+ dilation=1,
224
+ groups=1,
225
+ ),
226
+ )
227
+
228
+ pretrained.act_postprocess2 = nn.Sequential(
229
+ readout_oper[1],
230
+ Transpose(1, 2),
231
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
232
+ nn.Conv2d(
233
+ in_channels=vit_features,
234
+ out_channels=features[1],
235
+ kernel_size=1,
236
+ stride=1,
237
+ padding=0,
238
+ ),
239
+ nn.ConvTranspose2d(
240
+ in_channels=features[1],
241
+ out_channels=features[1],
242
+ kernel_size=2,
243
+ stride=2,
244
+ padding=0,
245
+ bias=True,
246
+ dilation=1,
247
+ groups=1,
248
+ ),
249
+ )
250
+
251
+ pretrained.act_postprocess3 = nn.Sequential(
252
+ readout_oper[2],
253
+ Transpose(1, 2),
254
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
255
+ nn.Conv2d(
256
+ in_channels=vit_features,
257
+ out_channels=features[2],
258
+ kernel_size=1,
259
+ stride=1,
260
+ padding=0,
261
+ ),
262
+ )
263
+
264
+ pretrained.act_postprocess4 = nn.Sequential(
265
+ readout_oper[3],
266
+ Transpose(1, 2),
267
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
268
+ nn.Conv2d(
269
+ in_channels=vit_features,
270
+ out_channels=features[3],
271
+ kernel_size=1,
272
+ stride=1,
273
+ padding=0,
274
+ ),
275
+ nn.Conv2d(
276
+ in_channels=features[3],
277
+ out_channels=features[3],
278
+ kernel_size=3,
279
+ stride=2,
280
+ padding=1,
281
+ ),
282
+ )
283
+
284
+ pretrained.model.start_index = start_index
285
+ pretrained.model.patch_size = [16, 16]
286
+
287
+ # We inject this function into the VisionTransformer instances so that
288
+ # we can use it with interpolated position embeddings without modifying the library source.
289
+ pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
290
+ pretrained.model._resize_pos_embed = types.MethodType(
291
+ _resize_pos_embed, pretrained.model
292
+ )
293
+
294
+ return pretrained
295
+
296
+
297
+ def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
298
+ model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
299
+
300
+ hooks = [5, 11, 17, 23] if hooks == None else hooks
301
+ return _make_vit_b16_backbone(
302
+ model,
303
+ features=[256, 512, 1024, 1024],
304
+ hooks=hooks,
305
+ vit_features=1024,
306
+ use_readout=use_readout,
307
+ )
308
+
309
+
310
+ def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
311
+ model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
312
+
313
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
314
+ return _make_vit_b16_backbone(
315
+ model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
316
+ )
317
+
318
+
319
+ def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
320
+ model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
321
+
322
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
323
+ return _make_vit_b16_backbone(
324
+ model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
325
+ )
326
+
327
+
328
+ def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
329
+ model = timm.create_model(
330
+ "vit_deit_base_distilled_patch16_384", pretrained=pretrained
331
+ )
332
+
333
+ hooks = [2, 5, 8, 11] if hooks == None else hooks
334
+ return _make_vit_b16_backbone(
335
+ model,
336
+ features=[96, 192, 384, 768],
337
+ hooks=hooks,
338
+ use_readout=use_readout,
339
+ start_index=2,
340
+ )
341
+
342
+
343
+ def _make_vit_b_rn50_backbone(
344
+ model,
345
+ features=[256, 512, 768, 768],
346
+ size=[384, 384],
347
+ hooks=[0, 1, 8, 11],
348
+ vit_features=768,
349
+ use_vit_only=False,
350
+ use_readout="ignore",
351
+ start_index=1,
352
+ ):
353
+ pretrained = nn.Module()
354
+
355
+ pretrained.model = model
356
+
357
+ if use_vit_only == True:
358
+ pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
359
+ pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
360
+ else:
361
+ pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
362
+ get_activation("1")
363
+ )
364
+ pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
365
+ get_activation("2")
366
+ )
367
+
368
+ pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
369
+ pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
370
+
371
+ pretrained.activations = activations
372
+
373
+ readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
374
+
375
+ if use_vit_only == True:
376
+ pretrained.act_postprocess1 = nn.Sequential(
377
+ readout_oper[0],
378
+ Transpose(1, 2),
379
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
380
+ nn.Conv2d(
381
+ in_channels=vit_features,
382
+ out_channels=features[0],
383
+ kernel_size=1,
384
+ stride=1,
385
+ padding=0,
386
+ ),
387
+ nn.ConvTranspose2d(
388
+ in_channels=features[0],
389
+ out_channels=features[0],
390
+ kernel_size=4,
391
+ stride=4,
392
+ padding=0,
393
+ bias=True,
394
+ dilation=1,
395
+ groups=1,
396
+ ),
397
+ )
398
+
399
+ pretrained.act_postprocess2 = nn.Sequential(
400
+ readout_oper[1],
401
+ Transpose(1, 2),
402
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
403
+ nn.Conv2d(
404
+ in_channels=vit_features,
405
+ out_channels=features[1],
406
+ kernel_size=1,
407
+ stride=1,
408
+ padding=0,
409
+ ),
410
+ nn.ConvTranspose2d(
411
+ in_channels=features[1],
412
+ out_channels=features[1],
413
+ kernel_size=2,
414
+ stride=2,
415
+ padding=0,
416
+ bias=True,
417
+ dilation=1,
418
+ groups=1,
419
+ ),
420
+ )
421
+ else:
422
+ pretrained.act_postprocess1 = nn.Sequential(
423
+ nn.Identity(), nn.Identity(), nn.Identity()
424
+ )
425
+ pretrained.act_postprocess2 = nn.Sequential(
426
+ nn.Identity(), nn.Identity(), nn.Identity()
427
+ )
428
+
429
+ pretrained.act_postprocess3 = nn.Sequential(
430
+ readout_oper[2],
431
+ Transpose(1, 2),
432
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
433
+ nn.Conv2d(
434
+ in_channels=vit_features,
435
+ out_channels=features[2],
436
+ kernel_size=1,
437
+ stride=1,
438
+ padding=0,
439
+ ),
440
+ )
441
+
442
+ pretrained.act_postprocess4 = nn.Sequential(
443
+ readout_oper[3],
444
+ Transpose(1, 2),
445
+ nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
446
+ nn.Conv2d(
447
+ in_channels=vit_features,
448
+ out_channels=features[3],
449
+ kernel_size=1,
450
+ stride=1,
451
+ padding=0,
452
+ ),
453
+ nn.Conv2d(
454
+ in_channels=features[3],
455
+ out_channels=features[3],
456
+ kernel_size=3,
457
+ stride=2,
458
+ padding=1,
459
+ ),
460
+ )
461
+
462
+ pretrained.model.start_index = start_index
463
+ pretrained.model.patch_size = [16, 16]
464
+
465
+ # We inject this function into the VisionTransformer instances so that
466
+ # we can use it with interpolated position embeddings without modifying the library source.
467
+ pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
468
+
469
+ # We inject this function into the VisionTransformer instances so that
470
+ # we can use it with interpolated position embeddings without modifying the library source.
471
+ pretrained.model._resize_pos_embed = types.MethodType(
472
+ _resize_pos_embed, pretrained.model
473
+ )
474
+
475
+ return pretrained
476
+
477
+
478
+ def _make_pretrained_vitb_rn50_384(
479
+ pretrained, use_readout="ignore", hooks=None, use_vit_only=False
480
+ ):
481
+ model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
482
+
483
+ hooks = [0, 1, 8, 11] if hooks == None else hooks
484
+ return _make_vit_b_rn50_backbone(
485
+ model,
486
+ features=[256, 512, 768, 768],
487
+ size=[384, 384],
488
+ hooks=hooks,
489
+ use_vit_only=use_vit_only,
490
+ use_readout=use_readout,
491
+ )
ControlNet/annotator/midas/utils.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Utils for monoDepth."""
2
+ import sys
3
+ import re
4
+ import numpy as np
5
+ import cv2
6
+ import torch
7
+
8
+
9
+ def read_pfm(path):
10
+ """Read pfm file.
11
+
12
+ Args:
13
+ path (str): path to file
14
+
15
+ Returns:
16
+ tuple: (data, scale)
17
+ """
18
+ with open(path, "rb") as file:
19
+
20
+ color = None
21
+ width = None
22
+ height = None
23
+ scale = None
24
+ endian = None
25
+
26
+ header = file.readline().rstrip()
27
+ if header.decode("ascii") == "PF":
28
+ color = True
29
+ elif header.decode("ascii") == "Pf":
30
+ color = False
31
+ else:
32
+ raise Exception("Not a PFM file: " + path)
33
+
34
+ dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
35
+ if dim_match:
36
+ width, height = list(map(int, dim_match.groups()))
37
+ else:
38
+ raise Exception("Malformed PFM header.")
39
+
40
+ scale = float(file.readline().decode("ascii").rstrip())
41
+ if scale < 0:
42
+ # little-endian
43
+ endian = "<"
44
+ scale = -scale
45
+ else:
46
+ # big-endian
47
+ endian = ">"
48
+
49
+ data = np.fromfile(file, endian + "f")
50
+ shape = (height, width, 3) if color else (height, width)
51
+
52
+ data = np.reshape(data, shape)
53
+ data = np.flipud(data)
54
+
55
+ return data, scale
56
+
57
+
58
+ def write_pfm(path, image, scale=1):
59
+ """Write pfm file.
60
+
61
+ Args:
62
+ path (str): pathto file
63
+ image (array): data
64
+ scale (int, optional): Scale. Defaults to 1.
65
+ """
66
+
67
+ with open(path, "wb") as file:
68
+ color = None
69
+
70
+ if image.dtype.name != "float32":
71
+ raise Exception("Image dtype must be float32.")
72
+
73
+ image = np.flipud(image)
74
+
75
+ if len(image.shape) == 3 and image.shape[2] == 3: # color image
76
+ color = True
77
+ elif (
78
+ len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
79
+ ): # greyscale
80
+ color = False
81
+ else:
82
+ raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
83
+
84
+ file.write("PF\n" if color else "Pf\n".encode())
85
+ file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
86
+
87
+ endian = image.dtype.byteorder
88
+
89
+ if endian == "<" or endian == "=" and sys.byteorder == "little":
90
+ scale = -scale
91
+
92
+ file.write("%f\n".encode() % scale)
93
+
94
+ image.tofile(file)
95
+
96
+
97
+ def read_image(path):
98
+ """Read image and output RGB image (0-1).
99
+
100
+ Args:
101
+ path (str): path to file
102
+
103
+ Returns:
104
+ array: RGB image (0-1)
105
+ """
106
+ img = cv2.imread(path)
107
+
108
+ if img.ndim == 2:
109
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
110
+
111
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
112
+
113
+ return img
114
+
115
+
116
+ def resize_image(img):
117
+ """Resize image and make it fit for network.
118
+
119
+ Args:
120
+ img (array): image
121
+
122
+ Returns:
123
+ tensor: data ready for network
124
+ """
125
+ height_orig = img.shape[0]
126
+ width_orig = img.shape[1]
127
+
128
+ if width_orig > height_orig:
129
+ scale = width_orig / 384
130
+ else:
131
+ scale = height_orig / 384
132
+
133
+ height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
134
+ width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
135
+
136
+ img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
137
+
138
+ img_resized = (
139
+ torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
140
+ )
141
+ img_resized = img_resized.unsqueeze(0)
142
+
143
+ return img_resized
144
+
145
+
146
+ def resize_depth(depth, width, height):
147
+ """Resize depth map and bring to CPU (numpy).
148
+
149
+ Args:
150
+ depth (tensor): depth
151
+ width (int): image width
152
+ height (int): image height
153
+
154
+ Returns:
155
+ array: processed depth
156
+ """
157
+ depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
158
+
159
+ depth_resized = cv2.resize(
160
+ depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
161
+ )
162
+
163
+ return depth_resized
164
+
165
+ def write_depth(path, depth, bits=1):
166
+ """Write depth map to pfm and png file.
167
+
168
+ Args:
169
+ path (str): filepath without extension
170
+ depth (array): depth
171
+ """
172
+ write_pfm(path + ".pfm", depth.astype(np.float32))
173
+
174
+ depth_min = depth.min()
175
+ depth_max = depth.max()
176
+
177
+ max_val = (2**(8*bits))-1
178
+
179
+ if depth_max - depth_min > np.finfo("float").eps:
180
+ out = max_val * (depth - depth_min) / (depth_max - depth_min)
181
+ else:
182
+ out = np.zeros(depth.shape, dtype=depth.type)
183
+
184
+ if bits == 1:
185
+ cv2.imwrite(path + ".png", out.astype("uint8"))
186
+ elif bits == 2:
187
+ cv2.imwrite(path + ".png", out.astype("uint16"))
188
+
189
+ return
ControlNet/annotator/mlsd/__init__.py ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+ import os
5
+
6
+ from einops import rearrange
7
+ from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny
8
+ from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
9
+ from .utils import pred_lines
10
+
11
+ from annotator.util import annotator_ckpts_path
12
+
13
+
14
+ remote_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/mlsd_large_512_fp32.pth"
15
+
16
+
17
+ class MLSDdetector:
18
+ def __init__(self):
19
+ model_path = os.path.join(annotator_ckpts_path, "mlsd_large_512_fp32.pth")
20
+ if not os.path.exists(model_path):
21
+ from basicsr.utils.download_util import load_file_from_url
22
+ load_file_from_url(remote_model_path, model_dir=annotator_ckpts_path)
23
+ model = MobileV2_MLSD_Large()
24
+ model.load_state_dict(torch.load(model_path), strict=True)
25
+ self.model = model.cuda().eval()
26
+
27
+ def __call__(self, input_image, thr_v, thr_d):
28
+ assert input_image.ndim == 3
29
+ img = input_image
30
+ img_output = np.zeros_like(img)
31
+ try:
32
+ with torch.no_grad():
33
+ lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d)
34
+ for line in lines:
35
+ x_start, y_start, x_end, y_end = [int(val) for val in line]
36
+ cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1)
37
+ except Exception as e:
38
+ pass
39
+ return img_output[:, :, 0]
ControlNet/annotator/mlsd/models/mbv2_mlsd_large.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.utils.model_zoo as model_zoo
6
+ from torch.nn import functional as F
7
+
8
+
9
+ class BlockTypeA(nn.Module):
10
+ def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
11
+ super(BlockTypeA, self).__init__()
12
+ self.conv1 = nn.Sequential(
13
+ nn.Conv2d(in_c2, out_c2, kernel_size=1),
14
+ nn.BatchNorm2d(out_c2),
15
+ nn.ReLU(inplace=True)
16
+ )
17
+ self.conv2 = nn.Sequential(
18
+ nn.Conv2d(in_c1, out_c1, kernel_size=1),
19
+ nn.BatchNorm2d(out_c1),
20
+ nn.ReLU(inplace=True)
21
+ )
22
+ self.upscale = upscale
23
+
24
+ def forward(self, a, b):
25
+ b = self.conv1(b)
26
+ a = self.conv2(a)
27
+ if self.upscale:
28
+ b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
29
+ return torch.cat((a, b), dim=1)
30
+
31
+
32
+ class BlockTypeB(nn.Module):
33
+ def __init__(self, in_c, out_c):
34
+ super(BlockTypeB, self).__init__()
35
+ self.conv1 = nn.Sequential(
36
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
37
+ nn.BatchNorm2d(in_c),
38
+ nn.ReLU()
39
+ )
40
+ self.conv2 = nn.Sequential(
41
+ nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
42
+ nn.BatchNorm2d(out_c),
43
+ nn.ReLU()
44
+ )
45
+
46
+ def forward(self, x):
47
+ x = self.conv1(x) + x
48
+ x = self.conv2(x)
49
+ return x
50
+
51
+ class BlockTypeC(nn.Module):
52
+ def __init__(self, in_c, out_c):
53
+ super(BlockTypeC, self).__init__()
54
+ self.conv1 = nn.Sequential(
55
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
56
+ nn.BatchNorm2d(in_c),
57
+ nn.ReLU()
58
+ )
59
+ self.conv2 = nn.Sequential(
60
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
61
+ nn.BatchNorm2d(in_c),
62
+ nn.ReLU()
63
+ )
64
+ self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
65
+
66
+ def forward(self, x):
67
+ x = self.conv1(x)
68
+ x = self.conv2(x)
69
+ x = self.conv3(x)
70
+ return x
71
+
72
+ def _make_divisible(v, divisor, min_value=None):
73
+ """
74
+ This function is taken from the original tf repo.
75
+ It ensures that all layers have a channel number that is divisible by 8
76
+ It can be seen here:
77
+ https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
78
+ :param v:
79
+ :param divisor:
80
+ :param min_value:
81
+ :return:
82
+ """
83
+ if min_value is None:
84
+ min_value = divisor
85
+ new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
86
+ # Make sure that round down does not go down by more than 10%.
87
+ if new_v < 0.9 * v:
88
+ new_v += divisor
89
+ return new_v
90
+
91
+
92
+ class ConvBNReLU(nn.Sequential):
93
+ def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
94
+ self.channel_pad = out_planes - in_planes
95
+ self.stride = stride
96
+ #padding = (kernel_size - 1) // 2
97
+
98
+ # TFLite uses slightly different padding than PyTorch
99
+ if stride == 2:
100
+ padding = 0
101
+ else:
102
+ padding = (kernel_size - 1) // 2
103
+
104
+ super(ConvBNReLU, self).__init__(
105
+ nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
106
+ nn.BatchNorm2d(out_planes),
107
+ nn.ReLU6(inplace=True)
108
+ )
109
+ self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
110
+
111
+
112
+ def forward(self, x):
113
+ # TFLite uses different padding
114
+ if self.stride == 2:
115
+ x = F.pad(x, (0, 1, 0, 1), "constant", 0)
116
+ #print(x.shape)
117
+
118
+ for module in self:
119
+ if not isinstance(module, nn.MaxPool2d):
120
+ x = module(x)
121
+ return x
122
+
123
+
124
+ class InvertedResidual(nn.Module):
125
+ def __init__(self, inp, oup, stride, expand_ratio):
126
+ super(InvertedResidual, self).__init__()
127
+ self.stride = stride
128
+ assert stride in [1, 2]
129
+
130
+ hidden_dim = int(round(inp * expand_ratio))
131
+ self.use_res_connect = self.stride == 1 and inp == oup
132
+
133
+ layers = []
134
+ if expand_ratio != 1:
135
+ # pw
136
+ layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
137
+ layers.extend([
138
+ # dw
139
+ ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
140
+ # pw-linear
141
+ nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
142
+ nn.BatchNorm2d(oup),
143
+ ])
144
+ self.conv = nn.Sequential(*layers)
145
+
146
+ def forward(self, x):
147
+ if self.use_res_connect:
148
+ return x + self.conv(x)
149
+ else:
150
+ return self.conv(x)
151
+
152
+
153
+ class MobileNetV2(nn.Module):
154
+ def __init__(self, pretrained=True):
155
+ """
156
+ MobileNet V2 main class
157
+ Args:
158
+ num_classes (int): Number of classes
159
+ width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
160
+ inverted_residual_setting: Network structure
161
+ round_nearest (int): Round the number of channels in each layer to be a multiple of this number
162
+ Set to 1 to turn off rounding
163
+ block: Module specifying inverted residual building block for mobilenet
164
+ """
165
+ super(MobileNetV2, self).__init__()
166
+
167
+ block = InvertedResidual
168
+ input_channel = 32
169
+ last_channel = 1280
170
+ width_mult = 1.0
171
+ round_nearest = 8
172
+
173
+ inverted_residual_setting = [
174
+ # t, c, n, s
175
+ [1, 16, 1, 1],
176
+ [6, 24, 2, 2],
177
+ [6, 32, 3, 2],
178
+ [6, 64, 4, 2],
179
+ [6, 96, 3, 1],
180
+ #[6, 160, 3, 2],
181
+ #[6, 320, 1, 1],
182
+ ]
183
+
184
+ # only check the first element, assuming user knows t,c,n,s are required
185
+ if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
186
+ raise ValueError("inverted_residual_setting should be non-empty "
187
+ "or a 4-element list, got {}".format(inverted_residual_setting))
188
+
189
+ # building first layer
190
+ input_channel = _make_divisible(input_channel * width_mult, round_nearest)
191
+ self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
192
+ features = [ConvBNReLU(4, input_channel, stride=2)]
193
+ # building inverted residual blocks
194
+ for t, c, n, s in inverted_residual_setting:
195
+ output_channel = _make_divisible(c * width_mult, round_nearest)
196
+ for i in range(n):
197
+ stride = s if i == 0 else 1
198
+ features.append(block(input_channel, output_channel, stride, expand_ratio=t))
199
+ input_channel = output_channel
200
+
201
+ self.features = nn.Sequential(*features)
202
+ self.fpn_selected = [1, 3, 6, 10, 13]
203
+ # weight initialization
204
+ for m in self.modules():
205
+ if isinstance(m, nn.Conv2d):
206
+ nn.init.kaiming_normal_(m.weight, mode='fan_out')
207
+ if m.bias is not None:
208
+ nn.init.zeros_(m.bias)
209
+ elif isinstance(m, nn.BatchNorm2d):
210
+ nn.init.ones_(m.weight)
211
+ nn.init.zeros_(m.bias)
212
+ elif isinstance(m, nn.Linear):
213
+ nn.init.normal_(m.weight, 0, 0.01)
214
+ nn.init.zeros_(m.bias)
215
+ if pretrained:
216
+ self._load_pretrained_model()
217
+
218
+ def _forward_impl(self, x):
219
+ # This exists since TorchScript doesn't support inheritance, so the superclass method
220
+ # (this one) needs to have a name other than `forward` that can be accessed in a subclass
221
+ fpn_features = []
222
+ for i, f in enumerate(self.features):
223
+ if i > self.fpn_selected[-1]:
224
+ break
225
+ x = f(x)
226
+ if i in self.fpn_selected:
227
+ fpn_features.append(x)
228
+
229
+ c1, c2, c3, c4, c5 = fpn_features
230
+ return c1, c2, c3, c4, c5
231
+
232
+
233
+ def forward(self, x):
234
+ return self._forward_impl(x)
235
+
236
+ def _load_pretrained_model(self):
237
+ pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
238
+ model_dict = {}
239
+ state_dict = self.state_dict()
240
+ for k, v in pretrain_dict.items():
241
+ if k in state_dict:
242
+ model_dict[k] = v
243
+ state_dict.update(model_dict)
244
+ self.load_state_dict(state_dict)
245
+
246
+
247
+ class MobileV2_MLSD_Large(nn.Module):
248
+ def __init__(self):
249
+ super(MobileV2_MLSD_Large, self).__init__()
250
+
251
+ self.backbone = MobileNetV2(pretrained=False)
252
+ ## A, B
253
+ self.block15 = BlockTypeA(in_c1= 64, in_c2= 96,
254
+ out_c1= 64, out_c2=64,
255
+ upscale=False)
256
+ self.block16 = BlockTypeB(128, 64)
257
+
258
+ ## A, B
259
+ self.block17 = BlockTypeA(in_c1 = 32, in_c2 = 64,
260
+ out_c1= 64, out_c2= 64)
261
+ self.block18 = BlockTypeB(128, 64)
262
+
263
+ ## A, B
264
+ self.block19 = BlockTypeA(in_c1=24, in_c2=64,
265
+ out_c1=64, out_c2=64)
266
+ self.block20 = BlockTypeB(128, 64)
267
+
268
+ ## A, B, C
269
+ self.block21 = BlockTypeA(in_c1=16, in_c2=64,
270
+ out_c1=64, out_c2=64)
271
+ self.block22 = BlockTypeB(128, 64)
272
+
273
+ self.block23 = BlockTypeC(64, 16)
274
+
275
+ def forward(self, x):
276
+ c1, c2, c3, c4, c5 = self.backbone(x)
277
+
278
+ x = self.block15(c4, c5)
279
+ x = self.block16(x)
280
+
281
+ x = self.block17(c3, x)
282
+ x = self.block18(x)
283
+
284
+ x = self.block19(c2, x)
285
+ x = self.block20(x)
286
+
287
+ x = self.block21(c1, x)
288
+ x = self.block22(x)
289
+ x = self.block23(x)
290
+ x = x[:, 7:, :, :]
291
+
292
+ return x
ControlNet/annotator/mlsd/models/mbv2_mlsd_tiny.py ADDED
@@ -0,0 +1,275 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.utils.model_zoo as model_zoo
6
+ from torch.nn import functional as F
7
+
8
+
9
+ class BlockTypeA(nn.Module):
10
+ def __init__(self, in_c1, in_c2, out_c1, out_c2, upscale = True):
11
+ super(BlockTypeA, self).__init__()
12
+ self.conv1 = nn.Sequential(
13
+ nn.Conv2d(in_c2, out_c2, kernel_size=1),
14
+ nn.BatchNorm2d(out_c2),
15
+ nn.ReLU(inplace=True)
16
+ )
17
+ self.conv2 = nn.Sequential(
18
+ nn.Conv2d(in_c1, out_c1, kernel_size=1),
19
+ nn.BatchNorm2d(out_c1),
20
+ nn.ReLU(inplace=True)
21
+ )
22
+ self.upscale = upscale
23
+
24
+ def forward(self, a, b):
25
+ b = self.conv1(b)
26
+ a = self.conv2(a)
27
+ b = F.interpolate(b, scale_factor=2.0, mode='bilinear', align_corners=True)
28
+ return torch.cat((a, b), dim=1)
29
+
30
+
31
+ class BlockTypeB(nn.Module):
32
+ def __init__(self, in_c, out_c):
33
+ super(BlockTypeB, self).__init__()
34
+ self.conv1 = nn.Sequential(
35
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
36
+ nn.BatchNorm2d(in_c),
37
+ nn.ReLU()
38
+ )
39
+ self.conv2 = nn.Sequential(
40
+ nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
41
+ nn.BatchNorm2d(out_c),
42
+ nn.ReLU()
43
+ )
44
+
45
+ def forward(self, x):
46
+ x = self.conv1(x) + x
47
+ x = self.conv2(x)
48
+ return x
49
+
50
+ class BlockTypeC(nn.Module):
51
+ def __init__(self, in_c, out_c):
52
+ super(BlockTypeC, self).__init__()
53
+ self.conv1 = nn.Sequential(
54
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=5, dilation=5),
55
+ nn.BatchNorm2d(in_c),
56
+ nn.ReLU()
57
+ )
58
+ self.conv2 = nn.Sequential(
59
+ nn.Conv2d(in_c, in_c, kernel_size=3, padding=1),
60
+ nn.BatchNorm2d(in_c),
61
+ nn.ReLU()
62
+ )
63
+ self.conv3 = nn.Conv2d(in_c, out_c, kernel_size=1)
64
+
65
+ def forward(self, x):
66
+ x = self.conv1(x)
67
+ x = self.conv2(x)
68
+ x = self.conv3(x)
69
+ return x
70
+
71
+ def _make_divisible(v, divisor, min_value=None):
72
+ """
73
+ This function is taken from the original tf repo.
74
+ It ensures that all layers have a channel number that is divisible by 8
75
+ It can be seen here:
76
+ https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
77
+ :param v:
78
+ :param divisor:
79
+ :param min_value:
80
+ :return:
81
+ """
82
+ if min_value is None:
83
+ min_value = divisor
84
+ new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
85
+ # Make sure that round down does not go down by more than 10%.
86
+ if new_v < 0.9 * v:
87
+ new_v += divisor
88
+ return new_v
89
+
90
+
91
+ class ConvBNReLU(nn.Sequential):
92
+ def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
93
+ self.channel_pad = out_planes - in_planes
94
+ self.stride = stride
95
+ #padding = (kernel_size - 1) // 2
96
+
97
+ # TFLite uses slightly different padding than PyTorch
98
+ if stride == 2:
99
+ padding = 0
100
+ else:
101
+ padding = (kernel_size - 1) // 2
102
+
103
+ super(ConvBNReLU, self).__init__(
104
+ nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
105
+ nn.BatchNorm2d(out_planes),
106
+ nn.ReLU6(inplace=True)
107
+ )
108
+ self.max_pool = nn.MaxPool2d(kernel_size=stride, stride=stride)
109
+
110
+
111
+ def forward(self, x):
112
+ # TFLite uses different padding
113
+ if self.stride == 2:
114
+ x = F.pad(x, (0, 1, 0, 1), "constant", 0)
115
+ #print(x.shape)
116
+
117
+ for module in self:
118
+ if not isinstance(module, nn.MaxPool2d):
119
+ x = module(x)
120
+ return x
121
+
122
+
123
+ class InvertedResidual(nn.Module):
124
+ def __init__(self, inp, oup, stride, expand_ratio):
125
+ super(InvertedResidual, self).__init__()
126
+ self.stride = stride
127
+ assert stride in [1, 2]
128
+
129
+ hidden_dim = int(round(inp * expand_ratio))
130
+ self.use_res_connect = self.stride == 1 and inp == oup
131
+
132
+ layers = []
133
+ if expand_ratio != 1:
134
+ # pw
135
+ layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
136
+ layers.extend([
137
+ # dw
138
+ ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
139
+ # pw-linear
140
+ nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
141
+ nn.BatchNorm2d(oup),
142
+ ])
143
+ self.conv = nn.Sequential(*layers)
144
+
145
+ def forward(self, x):
146
+ if self.use_res_connect:
147
+ return x + self.conv(x)
148
+ else:
149
+ return self.conv(x)
150
+
151
+
152
+ class MobileNetV2(nn.Module):
153
+ def __init__(self, pretrained=True):
154
+ """
155
+ MobileNet V2 main class
156
+ Args:
157
+ num_classes (int): Number of classes
158
+ width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
159
+ inverted_residual_setting: Network structure
160
+ round_nearest (int): Round the number of channels in each layer to be a multiple of this number
161
+ Set to 1 to turn off rounding
162
+ block: Module specifying inverted residual building block for mobilenet
163
+ """
164
+ super(MobileNetV2, self).__init__()
165
+
166
+ block = InvertedResidual
167
+ input_channel = 32
168
+ last_channel = 1280
169
+ width_mult = 1.0
170
+ round_nearest = 8
171
+
172
+ inverted_residual_setting = [
173
+ # t, c, n, s
174
+ [1, 16, 1, 1],
175
+ [6, 24, 2, 2],
176
+ [6, 32, 3, 2],
177
+ [6, 64, 4, 2],
178
+ #[6, 96, 3, 1],
179
+ #[6, 160, 3, 2],
180
+ #[6, 320, 1, 1],
181
+ ]
182
+
183
+ # only check the first element, assuming user knows t,c,n,s are required
184
+ if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
185
+ raise ValueError("inverted_residual_setting should be non-empty "
186
+ "or a 4-element list, got {}".format(inverted_residual_setting))
187
+
188
+ # building first layer
189
+ input_channel = _make_divisible(input_channel * width_mult, round_nearest)
190
+ self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
191
+ features = [ConvBNReLU(4, input_channel, stride=2)]
192
+ # building inverted residual blocks
193
+ for t, c, n, s in inverted_residual_setting:
194
+ output_channel = _make_divisible(c * width_mult, round_nearest)
195
+ for i in range(n):
196
+ stride = s if i == 0 else 1
197
+ features.append(block(input_channel, output_channel, stride, expand_ratio=t))
198
+ input_channel = output_channel
199
+ self.features = nn.Sequential(*features)
200
+
201
+ self.fpn_selected = [3, 6, 10]
202
+ # weight initialization
203
+ for m in self.modules():
204
+ if isinstance(m, nn.Conv2d):
205
+ nn.init.kaiming_normal_(m.weight, mode='fan_out')
206
+ if m.bias is not None:
207
+ nn.init.zeros_(m.bias)
208
+ elif isinstance(m, nn.BatchNorm2d):
209
+ nn.init.ones_(m.weight)
210
+ nn.init.zeros_(m.bias)
211
+ elif isinstance(m, nn.Linear):
212
+ nn.init.normal_(m.weight, 0, 0.01)
213
+ nn.init.zeros_(m.bias)
214
+
215
+ #if pretrained:
216
+ # self._load_pretrained_model()
217
+
218
+ def _forward_impl(self, x):
219
+ # This exists since TorchScript doesn't support inheritance, so the superclass method
220
+ # (this one) needs to have a name other than `forward` that can be accessed in a subclass
221
+ fpn_features = []
222
+ for i, f in enumerate(self.features):
223
+ if i > self.fpn_selected[-1]:
224
+ break
225
+ x = f(x)
226
+ if i in self.fpn_selected:
227
+ fpn_features.append(x)
228
+
229
+ c2, c3, c4 = fpn_features
230
+ return c2, c3, c4
231
+
232
+
233
+ def forward(self, x):
234
+ return self._forward_impl(x)
235
+
236
+ def _load_pretrained_model(self):
237
+ pretrain_dict = model_zoo.load_url('https://download.pytorch.org/models/mobilenet_v2-b0353104.pth')
238
+ model_dict = {}
239
+ state_dict = self.state_dict()
240
+ for k, v in pretrain_dict.items():
241
+ if k in state_dict:
242
+ model_dict[k] = v
243
+ state_dict.update(model_dict)
244
+ self.load_state_dict(state_dict)
245
+
246
+
247
+ class MobileV2_MLSD_Tiny(nn.Module):
248
+ def __init__(self):
249
+ super(MobileV2_MLSD_Tiny, self).__init__()
250
+
251
+ self.backbone = MobileNetV2(pretrained=True)
252
+
253
+ self.block12 = BlockTypeA(in_c1= 32, in_c2= 64,
254
+ out_c1= 64, out_c2=64)
255
+ self.block13 = BlockTypeB(128, 64)
256
+
257
+ self.block14 = BlockTypeA(in_c1 = 24, in_c2 = 64,
258
+ out_c1= 32, out_c2= 32)
259
+ self.block15 = BlockTypeB(64, 64)
260
+
261
+ self.block16 = BlockTypeC(64, 16)
262
+
263
+ def forward(self, x):
264
+ c2, c3, c4 = self.backbone(x)
265
+
266
+ x = self.block12(c3, c4)
267
+ x = self.block13(x)
268
+ x = self.block14(c2, x)
269
+ x = self.block15(x)
270
+ x = self.block16(x)
271
+ x = x[:, 7:, :, :]
272
+ #print(x.shape)
273
+ x = F.interpolate(x, scale_factor=2.0, mode='bilinear', align_corners=True)
274
+
275
+ return x
ControlNet/annotator/mlsd/utils.py ADDED
@@ -0,0 +1,580 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ modified by lihaoweicv
3
+ pytorch version
4
+ '''
5
+
6
+ '''
7
+ M-LSD
8
+ Copyright 2021-present NAVER Corp.
9
+ Apache License v2.0
10
+ '''
11
+
12
+ import os
13
+ import numpy as np
14
+ import cv2
15
+ import torch
16
+ from torch.nn import functional as F
17
+
18
+
19
+ def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5):
20
+ '''
21
+ tpMap:
22
+ center: tpMap[1, 0, :, :]
23
+ displacement: tpMap[1, 1:5, :, :]
24
+ '''
25
+ b, c, h, w = tpMap.shape
26
+ assert b==1, 'only support bsize==1'
27
+ displacement = tpMap[:, 1:5, :, :][0]
28
+ center = tpMap[:, 0, :, :]
29
+ heat = torch.sigmoid(center)
30
+ hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2)
31
+ keep = (hmax == heat).float()
32
+ heat = heat * keep
33
+ heat = heat.reshape(-1, )
34
+
35
+ scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True)
36
+ yy = torch.floor_divide(indices, w).unsqueeze(-1)
37
+ xx = torch.fmod(indices, w).unsqueeze(-1)
38
+ ptss = torch.cat((yy, xx),dim=-1)
39
+
40
+ ptss = ptss.detach().cpu().numpy()
41
+ scores = scores.detach().cpu().numpy()
42
+ displacement = displacement.detach().cpu().numpy()
43
+ displacement = displacement.transpose((1,2,0))
44
+ return ptss, scores, displacement
45
+
46
+
47
+ def pred_lines(image, model,
48
+ input_shape=[512, 512],
49
+ score_thr=0.10,
50
+ dist_thr=20.0):
51
+ h, w, _ = image.shape
52
+ h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]]
53
+
54
+ resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA),
55
+ np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
56
+
57
+ resized_image = resized_image.transpose((2,0,1))
58
+ batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
59
+ batch_image = (batch_image / 127.5) - 1.0
60
+
61
+ batch_image = torch.from_numpy(batch_image).float().cuda()
62
+ outputs = model(batch_image)
63
+ pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
64
+ start = vmap[:, :, :2]
65
+ end = vmap[:, :, 2:]
66
+ dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
67
+
68
+ segments_list = []
69
+ for center, score in zip(pts, pts_score):
70
+ y, x = center
71
+ distance = dist_map[y, x]
72
+ if score > score_thr and distance > dist_thr:
73
+ disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
74
+ x_start = x + disp_x_start
75
+ y_start = y + disp_y_start
76
+ x_end = x + disp_x_end
77
+ y_end = y + disp_y_end
78
+ segments_list.append([x_start, y_start, x_end, y_end])
79
+
80
+ lines = 2 * np.array(segments_list) # 256 > 512
81
+ lines[:, 0] = lines[:, 0] * w_ratio
82
+ lines[:, 1] = lines[:, 1] * h_ratio
83
+ lines[:, 2] = lines[:, 2] * w_ratio
84
+ lines[:, 3] = lines[:, 3] * h_ratio
85
+
86
+ return lines
87
+
88
+
89
+ def pred_squares(image,
90
+ model,
91
+ input_shape=[512, 512],
92
+ params={'score': 0.06,
93
+ 'outside_ratio': 0.28,
94
+ 'inside_ratio': 0.45,
95
+ 'w_overlap': 0.0,
96
+ 'w_degree': 1.95,
97
+ 'w_length': 0.0,
98
+ 'w_area': 1.86,
99
+ 'w_center': 0.14}):
100
+ '''
101
+ shape = [height, width]
102
+ '''
103
+ h, w, _ = image.shape
104
+ original_shape = [h, w]
105
+
106
+ resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA),
107
+ np.ones([input_shape[0], input_shape[1], 1])], axis=-1)
108
+ resized_image = resized_image.transpose((2, 0, 1))
109
+ batch_image = np.expand_dims(resized_image, axis=0).astype('float32')
110
+ batch_image = (batch_image / 127.5) - 1.0
111
+
112
+ batch_image = torch.from_numpy(batch_image).float().cuda()
113
+ outputs = model(batch_image)
114
+
115
+ pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3)
116
+ start = vmap[:, :, :2] # (x, y)
117
+ end = vmap[:, :, 2:] # (x, y)
118
+ dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1))
119
+
120
+ junc_list = []
121
+ segments_list = []
122
+ for junc, score in zip(pts, pts_score):
123
+ y, x = junc
124
+ distance = dist_map[y, x]
125
+ if score > params['score'] and distance > 20.0:
126
+ junc_list.append([x, y])
127
+ disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :]
128
+ d_arrow = 1.0
129
+ x_start = x + d_arrow * disp_x_start
130
+ y_start = y + d_arrow * disp_y_start
131
+ x_end = x + d_arrow * disp_x_end
132
+ y_end = y + d_arrow * disp_y_end
133
+ segments_list.append([x_start, y_start, x_end, y_end])
134
+
135
+ segments = np.array(segments_list)
136
+
137
+ ####### post processing for squares
138
+ # 1. get unique lines
139
+ point = np.array([[0, 0]])
140
+ point = point[0]
141
+ start = segments[:, :2]
142
+ end = segments[:, 2:]
143
+ diff = start - end
144
+ a = diff[:, 1]
145
+ b = -diff[:, 0]
146
+ c = a * start[:, 0] + b * start[:, 1]
147
+
148
+ d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10)
149
+ theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi
150
+ theta[theta < 0.0] += 180
151
+ hough = np.concatenate([d[:, None], theta[:, None]], axis=-1)
152
+
153
+ d_quant = 1
154
+ theta_quant = 2
155
+ hough[:, 0] //= d_quant
156
+ hough[:, 1] //= theta_quant
157
+ _, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True)
158
+
159
+ acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32')
160
+ idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1
161
+ yx_indices = hough[indices, :].astype('int32')
162
+ acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts
163
+ idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices
164
+
165
+ acc_map_np = acc_map
166
+ # acc_map = acc_map[None, :, :, None]
167
+ #
168
+ # ### fast suppression using tensorflow op
169
+ # acc_map = tf.constant(acc_map, dtype=tf.float32)
170
+ # max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map)
171
+ # acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32)
172
+ # flatten_acc_map = tf.reshape(acc_map, [1, -1])
173
+ # topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts))
174
+ # _, h, w, _ = acc_map.shape
175
+ # y = tf.expand_dims(topk_indices // w, axis=-1)
176
+ # x = tf.expand_dims(topk_indices % w, axis=-1)
177
+ # yx = tf.concat([y, x], axis=-1)
178
+
179
+ ### fast suppression using pytorch op
180
+ acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0)
181
+ _,_, h, w = acc_map.shape
182
+ max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2)
183
+ acc_map = acc_map * ( (acc_map == max_acc_map).float() )
184
+ flatten_acc_map = acc_map.reshape([-1, ])
185
+
186
+ scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True)
187
+ yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1)
188
+ xx = torch.fmod(indices, w).unsqueeze(-1)
189
+ yx = torch.cat((yy, xx), dim=-1)
190
+
191
+ yx = yx.detach().cpu().numpy()
192
+
193
+ topk_values = scores.detach().cpu().numpy()
194
+ indices = idx_map[yx[:, 0], yx[:, 1]]
195
+ basis = 5 // 2
196
+
197
+ merged_segments = []
198
+ for yx_pt, max_indice, value in zip(yx, indices, topk_values):
199
+ y, x = yx_pt
200
+ if max_indice == -1 or value == 0:
201
+ continue
202
+ segment_list = []
203
+ for y_offset in range(-basis, basis + 1):
204
+ for x_offset in range(-basis, basis + 1):
205
+ indice = idx_map[y + y_offset, x + x_offset]
206
+ cnt = int(acc_map_np[y + y_offset, x + x_offset])
207
+ if indice != -1:
208
+ segment_list.append(segments[indice])
209
+ if cnt > 1:
210
+ check_cnt = 1
211
+ current_hough = hough[indice]
212
+ for new_indice, new_hough in enumerate(hough):
213
+ if (current_hough == new_hough).all() and indice != new_indice:
214
+ segment_list.append(segments[new_indice])
215
+ check_cnt += 1
216
+ if check_cnt == cnt:
217
+ break
218
+ group_segments = np.array(segment_list).reshape([-1, 2])
219
+ sorted_group_segments = np.sort(group_segments, axis=0)
220
+ x_min, y_min = sorted_group_segments[0, :]
221
+ x_max, y_max = sorted_group_segments[-1, :]
222
+
223
+ deg = theta[max_indice]
224
+ if deg >= 90:
225
+ merged_segments.append([x_min, y_max, x_max, y_min])
226
+ else:
227
+ merged_segments.append([x_min, y_min, x_max, y_max])
228
+
229
+ # 2. get intersections
230
+ new_segments = np.array(merged_segments) # (x1, y1, x2, y2)
231
+ start = new_segments[:, :2] # (x1, y1)
232
+ end = new_segments[:, 2:] # (x2, y2)
233
+ new_centers = (start + end) / 2.0
234
+ diff = start - end
235
+ dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1))
236
+
237
+ # ax + by = c
238
+ a = diff[:, 1]
239
+ b = -diff[:, 0]
240
+ c = a * start[:, 0] + b * start[:, 1]
241
+ pre_det = a[:, None] * b[None, :]
242
+ det = pre_det - np.transpose(pre_det)
243
+
244
+ pre_inter_y = a[:, None] * c[None, :]
245
+ inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10)
246
+ pre_inter_x = c[:, None] * b[None, :]
247
+ inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10)
248
+ inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32')
249
+
250
+ # 3. get corner information
251
+ # 3.1 get distance
252
+ '''
253
+ dist_segments:
254
+ | dist(0), dist(1), dist(2), ...|
255
+ dist_inter_to_segment1:
256
+ | dist(inter,0), dist(inter,0), dist(inter,0), ... |
257
+ | dist(inter,1), dist(inter,1), dist(inter,1), ... |
258
+ ...
259
+ dist_inter_to_semgnet2:
260
+ | dist(inter,0), dist(inter,1), dist(inter,2), ... |
261
+ | dist(inter,0), dist(inter,1), dist(inter,2), ... |
262
+ ...
263
+ '''
264
+
265
+ dist_inter_to_segment1_start = np.sqrt(
266
+ np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
267
+ dist_inter_to_segment1_end = np.sqrt(
268
+ np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
269
+ dist_inter_to_segment2_start = np.sqrt(
270
+ np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
271
+ dist_inter_to_segment2_end = np.sqrt(
272
+ np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1]
273
+
274
+ # sort ascending
275
+ dist_inter_to_segment1 = np.sort(
276
+ np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1),
277
+ axis=-1) # [n_batch, n_batch, 2]
278
+ dist_inter_to_segment2 = np.sort(
279
+ np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1),
280
+ axis=-1) # [n_batch, n_batch, 2]
281
+
282
+ # 3.2 get degree
283
+ inter_to_start = new_centers[:, None, :] - inter_pts
284
+ deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi
285
+ deg_inter_to_start[deg_inter_to_start < 0.0] += 360
286
+ inter_to_end = new_centers[None, :, :] - inter_pts
287
+ deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi
288
+ deg_inter_to_end[deg_inter_to_end < 0.0] += 360
289
+
290
+ '''
291
+ B -- G
292
+ | |
293
+ C -- R
294
+ B : blue / G: green / C: cyan / R: red
295
+
296
+ 0 -- 1
297
+ | |
298
+ 3 -- 2
299
+ '''
300
+ # rename variables
301
+ deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end
302
+ # sort deg ascending
303
+ deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1)
304
+
305
+ deg_diff_map = np.abs(deg1_map - deg2_map)
306
+ # we only consider the smallest degree of intersect
307
+ deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180]
308
+
309
+ # define available degree range
310
+ deg_range = [60, 120]
311
+
312
+ corner_dict = {corner_info: [] for corner_info in range(4)}
313
+ inter_points = []
314
+ for i in range(inter_pts.shape[0]):
315
+ for j in range(i + 1, inter_pts.shape[1]):
316
+ # i, j > line index, always i < j
317
+ x, y = inter_pts[i, j, :]
318
+ deg1, deg2 = deg_sort[i, j, :]
319
+ deg_diff = deg_diff_map[i, j]
320
+
321
+ check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1]
322
+
323
+ outside_ratio = params['outside_ratio'] # over ratio >>> drop it!
324
+ inside_ratio = params['inside_ratio'] # over ratio >>> drop it!
325
+ check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \
326
+ dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \
327
+ (dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \
328
+ dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \
329
+ ((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \
330
+ dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \
331
+ (dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \
332
+ dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio))
333
+
334
+ if check_degree and check_distance:
335
+ corner_info = None
336
+
337
+ if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \
338
+ (deg2 >= 315 and deg1 >= 45 and deg1 <= 120):
339
+ corner_info, color_info = 0, 'blue'
340
+ elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225):
341
+ corner_info, color_info = 1, 'green'
342
+ elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315):
343
+ corner_info, color_info = 2, 'black'
344
+ elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \
345
+ (deg2 >= 315 and deg1 >= 225 and deg1 <= 315):
346
+ corner_info, color_info = 3, 'cyan'
347
+ else:
348
+ corner_info, color_info = 4, 'red' # we don't use it
349
+ continue
350
+
351
+ corner_dict[corner_info].append([x, y, i, j])
352
+ inter_points.append([x, y])
353
+
354
+ square_list = []
355
+ connect_list = []
356
+ segments_list = []
357
+ for corner0 in corner_dict[0]:
358
+ for corner1 in corner_dict[1]:
359
+ connect01 = False
360
+ for corner0_line in corner0[2:]:
361
+ if corner0_line in corner1[2:]:
362
+ connect01 = True
363
+ break
364
+ if connect01:
365
+ for corner2 in corner_dict[2]:
366
+ connect12 = False
367
+ for corner1_line in corner1[2:]:
368
+ if corner1_line in corner2[2:]:
369
+ connect12 = True
370
+ break
371
+ if connect12:
372
+ for corner3 in corner_dict[3]:
373
+ connect23 = False
374
+ for corner2_line in corner2[2:]:
375
+ if corner2_line in corner3[2:]:
376
+ connect23 = True
377
+ break
378
+ if connect23:
379
+ for corner3_line in corner3[2:]:
380
+ if corner3_line in corner0[2:]:
381
+ # SQUARE!!!
382
+ '''
383
+ 0 -- 1
384
+ | |
385
+ 3 -- 2
386
+ square_list:
387
+ order: 0 > 1 > 2 > 3
388
+ | x0, y0, x1, y1, x2, y2, x3, y3 |
389
+ | x0, y0, x1, y1, x2, y2, x3, y3 |
390
+ ...
391
+ connect_list:
392
+ order: 01 > 12 > 23 > 30
393
+ | line_idx01, line_idx12, line_idx23, line_idx30 |
394
+ | line_idx01, line_idx12, line_idx23, line_idx30 |
395
+ ...
396
+ segments_list:
397
+ order: 0 > 1 > 2 > 3
398
+ | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
399
+ | line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j |
400
+ ...
401
+ '''
402
+ square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2])
403
+ connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line])
404
+ segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:])
405
+
406
+ def check_outside_inside(segments_info, connect_idx):
407
+ # return 'outside or inside', min distance, cover_param, peri_param
408
+ if connect_idx == segments_info[0]:
409
+ check_dist_mat = dist_inter_to_segment1
410
+ else:
411
+ check_dist_mat = dist_inter_to_segment2
412
+
413
+ i, j = segments_info
414
+ min_dist, max_dist = check_dist_mat[i, j, :]
415
+ connect_dist = dist_segments[connect_idx]
416
+ if max_dist > connect_dist:
417
+ return 'outside', min_dist, 0, 1
418
+ else:
419
+ return 'inside', min_dist, -1, -1
420
+
421
+ top_square = None
422
+
423
+ try:
424
+ map_size = input_shape[0] / 2
425
+ squares = np.array(square_list).reshape([-1, 4, 2])
426
+ score_array = []
427
+ connect_array = np.array(connect_list)
428
+ segments_array = np.array(segments_list).reshape([-1, 4, 2])
429
+
430
+ # get degree of corners:
431
+ squares_rollup = np.roll(squares, 1, axis=1)
432
+ squares_rolldown = np.roll(squares, -1, axis=1)
433
+ vec1 = squares_rollup - squares
434
+ normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10)
435
+ vec2 = squares_rolldown - squares
436
+ normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10)
437
+ inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4]
438
+ squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4]
439
+
440
+ # get square score
441
+ overlap_scores = []
442
+ degree_scores = []
443
+ length_scores = []
444
+
445
+ for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree):
446
+ '''
447
+ 0 -- 1
448
+ | |
449
+ 3 -- 2
450
+
451
+ # segments: [4, 2]
452
+ # connects: [4]
453
+ '''
454
+
455
+ ###################################### OVERLAP SCORES
456
+ cover = 0
457
+ perimeter = 0
458
+ # check 0 > 1 > 2 > 3
459
+ square_length = []
460
+
461
+ for start_idx in range(4):
462
+ end_idx = (start_idx + 1) % 4
463
+
464
+ connect_idx = connects[start_idx] # segment idx of segment01
465
+ start_segments = segments[start_idx]
466
+ end_segments = segments[end_idx]
467
+
468
+ start_point = square[start_idx]
469
+ end_point = square[end_idx]
470
+
471
+ # check whether outside or inside
472
+ start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments,
473
+ connect_idx)
474
+ end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx)
475
+
476
+ cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min
477
+ perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min
478
+
479
+ square_length.append(
480
+ dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min)
481
+
482
+ overlap_scores.append(cover / perimeter)
483
+ ######################################
484
+ ###################################### DEGREE SCORES
485
+ '''
486
+ deg0 vs deg2
487
+ deg1 vs deg3
488
+ '''
489
+ deg0, deg1, deg2, deg3 = degree
490
+ deg_ratio1 = deg0 / deg2
491
+ if deg_ratio1 > 1.0:
492
+ deg_ratio1 = 1 / deg_ratio1
493
+ deg_ratio2 = deg1 / deg3
494
+ if deg_ratio2 > 1.0:
495
+ deg_ratio2 = 1 / deg_ratio2
496
+ degree_scores.append((deg_ratio1 + deg_ratio2) / 2)
497
+ ######################################
498
+ ###################################### LENGTH SCORES
499
+ '''
500
+ len0 vs len2
501
+ len1 vs len3
502
+ '''
503
+ len0, len1, len2, len3 = square_length
504
+ len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0
505
+ len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1
506
+ length_scores.append((len_ratio1 + len_ratio2) / 2)
507
+
508
+ ######################################
509
+
510
+ overlap_scores = np.array(overlap_scores)
511
+ overlap_scores /= np.max(overlap_scores)
512
+
513
+ degree_scores = np.array(degree_scores)
514
+ # degree_scores /= np.max(degree_scores)
515
+
516
+ length_scores = np.array(length_scores)
517
+
518
+ ###################################### AREA SCORES
519
+ area_scores = np.reshape(squares, [-1, 4, 2])
520
+ area_x = area_scores[:, :, 0]
521
+ area_y = area_scores[:, :, 1]
522
+ correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0]
523
+ area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1)
524
+ area_scores = 0.5 * np.abs(area_scores + correction)
525
+ area_scores /= (map_size * map_size) # np.max(area_scores)
526
+ ######################################
527
+
528
+ ###################################### CENTER SCORES
529
+ centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2]
530
+ # squares: [n, 4, 2]
531
+ square_centers = np.mean(squares, axis=1) # [n, 2]
532
+ center2center = np.sqrt(np.sum((centers - square_centers) ** 2))
533
+ center_scores = center2center / (map_size / np.sqrt(2.0))
534
+
535
+ '''
536
+ score_w = [overlap, degree, area, center, length]
537
+ '''
538
+ score_w = [0.0, 1.0, 10.0, 0.5, 1.0]
539
+ score_array = params['w_overlap'] * overlap_scores \
540
+ + params['w_degree'] * degree_scores \
541
+ + params['w_area'] * area_scores \
542
+ - params['w_center'] * center_scores \
543
+ + params['w_length'] * length_scores
544
+
545
+ best_square = []
546
+
547
+ sorted_idx = np.argsort(score_array)[::-1]
548
+ score_array = score_array[sorted_idx]
549
+ squares = squares[sorted_idx]
550
+
551
+ except Exception as e:
552
+ pass
553
+
554
+ '''return list
555
+ merged_lines, squares, scores
556
+ '''
557
+
558
+ try:
559
+ new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1]
560
+ new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0]
561
+ new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1]
562
+ new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0]
563
+ except:
564
+ new_segments = []
565
+
566
+ try:
567
+ squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1]
568
+ squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0]
569
+ except:
570
+ squares = []
571
+ score_array = []
572
+
573
+ try:
574
+ inter_points = np.array(inter_points)
575
+ inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1]
576
+ inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0]
577
+ except:
578
+ inter_points = []
579
+
580
+ return new_segments, squares, score_array, inter_points
ControlNet/annotator/openpose/__init__.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
3
+
4
+ import torch
5
+ import numpy as np
6
+ from . import util
7
+ from .body import Body
8
+ from .hand import Hand
9
+ from annotator.util import annotator_ckpts_path
10
+
11
+
12
+ body_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/body_pose_model.pth"
13
+ hand_model_path = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/hand_pose_model.pth"
14
+
15
+
16
+ class OpenposeDetector:
17
+ def __init__(self):
18
+ body_modelpath = os.path.join(annotator_ckpts_path, "body_pose_model.pth")
19
+ hand_modelpath = os.path.join(annotator_ckpts_path, "hand_pose_model.pth")
20
+
21
+ if not os.path.exists(hand_modelpath):
22
+ from basicsr.utils.download_util import load_file_from_url
23
+ load_file_from_url(body_model_path, model_dir=annotator_ckpts_path)
24
+ load_file_from_url(hand_model_path, model_dir=annotator_ckpts_path)
25
+
26
+ self.body_estimation = Body(body_modelpath)
27
+ self.hand_estimation = Hand(hand_modelpath)
28
+
29
+ def __call__(self, oriImg, hand=False):
30
+ oriImg = oriImg[:, :, ::-1].copy()
31
+ with torch.no_grad():
32
+ candidate, subset = self.body_estimation(oriImg)
33
+ canvas = np.zeros_like(oriImg)
34
+ canvas = util.draw_bodypose(canvas, candidate, subset)
35
+ if hand:
36
+ hands_list = util.handDetect(candidate, subset, oriImg)
37
+ all_hand_peaks = []
38
+ for x, y, w, is_left in hands_list:
39
+ peaks = self.hand_estimation(oriImg[y:y+w, x:x+w, :])
40
+ peaks[:, 0] = np.where(peaks[:, 0] == 0, peaks[:, 0], peaks[:, 0] + x)
41
+ peaks[:, 1] = np.where(peaks[:, 1] == 0, peaks[:, 1], peaks[:, 1] + y)
42
+ all_hand_peaks.append(peaks)
43
+ canvas = util.draw_handpose(canvas, all_hand_peaks)
44
+ return canvas, dict(candidate=candidate.tolist(), subset=subset.tolist())
ControlNet/annotator/openpose/body.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import math
4
+ import time
5
+ from scipy.ndimage.filters import gaussian_filter
6
+ import matplotlib.pyplot as plt
7
+ import matplotlib
8
+ import torch
9
+ from torchvision import transforms
10
+
11
+ from . import util
12
+ from .model import bodypose_model
13
+
14
+ class Body(object):
15
+ def __init__(self, model_path):
16
+ self.model = bodypose_model()
17
+ if torch.cuda.is_available():
18
+ self.model = self.model.cuda()
19
+ print('cuda')
20
+ model_dict = util.transfer(self.model, torch.load(model_path))
21
+ self.model.load_state_dict(model_dict)
22
+ self.model.eval()
23
+
24
+ def __call__(self, oriImg):
25
+ # scale_search = [0.5, 1.0, 1.5, 2.0]
26
+ scale_search = [0.5]
27
+ boxsize = 368
28
+ stride = 8
29
+ padValue = 128
30
+ thre1 = 0.1
31
+ thre2 = 0.05
32
+ multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
33
+ heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 19))
34
+ paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
35
+
36
+ for m in range(len(multiplier)):
37
+ scale = multiplier[m]
38
+ imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
39
+ imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
40
+ im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
41
+ im = np.ascontiguousarray(im)
42
+
43
+ data = torch.from_numpy(im).float()
44
+ if torch.cuda.is_available():
45
+ data = data.cuda()
46
+ # data = data.permute([2, 0, 1]).unsqueeze(0).float()
47
+ with torch.no_grad():
48
+ Mconv7_stage6_L1, Mconv7_stage6_L2 = self.model(data)
49
+ Mconv7_stage6_L1 = Mconv7_stage6_L1.cpu().numpy()
50
+ Mconv7_stage6_L2 = Mconv7_stage6_L2.cpu().numpy()
51
+
52
+ # extract outputs, resize, and remove padding
53
+ # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps
54
+ heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0)) # output 1 is heatmaps
55
+ heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
56
+ heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
57
+ heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
58
+
59
+ # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs
60
+ paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0)) # output 0 is PAFs
61
+ paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
62
+ paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
63
+ paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
64
+
65
+ heatmap_avg += heatmap_avg + heatmap / len(multiplier)
66
+ paf_avg += + paf / len(multiplier)
67
+
68
+ all_peaks = []
69
+ peak_counter = 0
70
+
71
+ for part in range(18):
72
+ map_ori = heatmap_avg[:, :, part]
73
+ one_heatmap = gaussian_filter(map_ori, sigma=3)
74
+
75
+ map_left = np.zeros(one_heatmap.shape)
76
+ map_left[1:, :] = one_heatmap[:-1, :]
77
+ map_right = np.zeros(one_heatmap.shape)
78
+ map_right[:-1, :] = one_heatmap[1:, :]
79
+ map_up = np.zeros(one_heatmap.shape)
80
+ map_up[:, 1:] = one_heatmap[:, :-1]
81
+ map_down = np.zeros(one_heatmap.shape)
82
+ map_down[:, :-1] = one_heatmap[:, 1:]
83
+
84
+ peaks_binary = np.logical_and.reduce(
85
+ (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1))
86
+ peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse
87
+ peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
88
+ peak_id = range(peak_counter, peak_counter + len(peaks))
89
+ peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))]
90
+
91
+ all_peaks.append(peaks_with_score_and_id)
92
+ peak_counter += len(peaks)
93
+
94
+ # find connection in the specified sequence, center 29 is in the position 15
95
+ limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
96
+ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
97
+ [1, 16], [16, 18], [3, 17], [6, 18]]
98
+ # the middle joints heatmap correpondence
99
+ mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], \
100
+ [23, 24], [25, 26], [27, 28], [29, 30], [47, 48], [49, 50], [53, 54], [51, 52], \
101
+ [55, 56], [37, 38], [45, 46]]
102
+
103
+ connection_all = []
104
+ special_k = []
105
+ mid_num = 10
106
+
107
+ for k in range(len(mapIdx)):
108
+ score_mid = paf_avg[:, :, [x - 19 for x in mapIdx[k]]]
109
+ candA = all_peaks[limbSeq[k][0] - 1]
110
+ candB = all_peaks[limbSeq[k][1] - 1]
111
+ nA = len(candA)
112
+ nB = len(candB)
113
+ indexA, indexB = limbSeq[k]
114
+ if (nA != 0 and nB != 0):
115
+ connection_candidate = []
116
+ for i in range(nA):
117
+ for j in range(nB):
118
+ vec = np.subtract(candB[j][:2], candA[i][:2])
119
+ norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1])
120
+ norm = max(0.001, norm)
121
+ vec = np.divide(vec, norm)
122
+
123
+ startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \
124
+ np.linspace(candA[i][1], candB[j][1], num=mid_num)))
125
+
126
+ vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \
127
+ for I in range(len(startend))])
128
+ vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \
129
+ for I in range(len(startend))])
130
+
131
+ score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
132
+ score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min(
133
+ 0.5 * oriImg.shape[0] / norm - 1, 0)
134
+ criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts)
135
+ criterion2 = score_with_dist_prior > 0
136
+ if criterion1 and criterion2:
137
+ connection_candidate.append(
138
+ [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])
139
+
140
+ connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
141
+ connection = np.zeros((0, 5))
142
+ for c in range(len(connection_candidate)):
143
+ i, j, s = connection_candidate[c][0:3]
144
+ if (i not in connection[:, 3] and j not in connection[:, 4]):
145
+ connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
146
+ if (len(connection) >= min(nA, nB)):
147
+ break
148
+
149
+ connection_all.append(connection)
150
+ else:
151
+ special_k.append(k)
152
+ connection_all.append([])
153
+
154
+ # last number in each row is the total parts number of that person
155
+ # the second last number in each row is the score of the overall configuration
156
+ subset = -1 * np.ones((0, 20))
157
+ candidate = np.array([item for sublist in all_peaks for item in sublist])
158
+
159
+ for k in range(len(mapIdx)):
160
+ if k not in special_k:
161
+ partAs = connection_all[k][:, 0]
162
+ partBs = connection_all[k][:, 1]
163
+ indexA, indexB = np.array(limbSeq[k]) - 1
164
+
165
+ for i in range(len(connection_all[k])): # = 1:size(temp,1)
166
+ found = 0
167
+ subset_idx = [-1, -1]
168
+ for j in range(len(subset)): # 1:size(subset,1):
169
+ if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
170
+ subset_idx[found] = j
171
+ found += 1
172
+
173
+ if found == 1:
174
+ j = subset_idx[0]
175
+ if subset[j][indexB] != partBs[i]:
176
+ subset[j][indexB] = partBs[i]
177
+ subset[j][-1] += 1
178
+ subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
179
+ elif found == 2: # if found 2 and disjoint, merge them
180
+ j1, j2 = subset_idx
181
+ membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
182
+ if len(np.nonzero(membership == 2)[0]) == 0: # merge
183
+ subset[j1][:-2] += (subset[j2][:-2] + 1)
184
+ subset[j1][-2:] += subset[j2][-2:]
185
+ subset[j1][-2] += connection_all[k][i][2]
186
+ subset = np.delete(subset, j2, 0)
187
+ else: # as like found == 1
188
+ subset[j1][indexB] = partBs[i]
189
+ subset[j1][-1] += 1
190
+ subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
191
+
192
+ # if find no partA in the subset, create a new subset
193
+ elif not found and k < 17:
194
+ row = -1 * np.ones(20)
195
+ row[indexA] = partAs[i]
196
+ row[indexB] = partBs[i]
197
+ row[-1] = 2
198
+ row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
199
+ subset = np.vstack([subset, row])
200
+ # delete some rows of subset which has few parts occur
201
+ deleteIdx = []
202
+ for i in range(len(subset)):
203
+ if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
204
+ deleteIdx.append(i)
205
+ subset = np.delete(subset, deleteIdx, axis=0)
206
+
207
+ # subset: n*20 array, 0-17 is the index in candidate, 18 is the total score, 19 is the total parts
208
+ # candidate: x, y, score, id
209
+ return candidate, subset
210
+
211
+ if __name__ == "__main__":
212
+ body_estimation = Body('../model/body_pose_model.pth')
213
+
214
+ test_image = '../images/ski.jpg'
215
+ oriImg = cv2.imread(test_image) # B,G,R order
216
+ candidate, subset = body_estimation(oriImg)
217
+ canvas = util.draw_bodypose(oriImg, candidate, subset)
218
+ plt.imshow(canvas[:, :, [2, 1, 0]])
219
+ plt.show()
ControlNet/annotator/openpose/hand.py ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import json
3
+ import numpy as np
4
+ import math
5
+ import time
6
+ from scipy.ndimage.filters import gaussian_filter
7
+ import matplotlib.pyplot as plt
8
+ import matplotlib
9
+ import torch
10
+ from skimage.measure import label
11
+
12
+ from .model import handpose_model
13
+ from . import util
14
+
15
+ class Hand(object):
16
+ def __init__(self, model_path):
17
+ self.model = handpose_model()
18
+ if torch.cuda.is_available():
19
+ self.model = self.model.cuda()
20
+ print('cuda')
21
+ model_dict = util.transfer(self.model, torch.load(model_path))
22
+ self.model.load_state_dict(model_dict)
23
+ self.model.eval()
24
+
25
+ def __call__(self, oriImg):
26
+ scale_search = [0.5, 1.0, 1.5, 2.0]
27
+ # scale_search = [0.5]
28
+ boxsize = 368
29
+ stride = 8
30
+ padValue = 128
31
+ thre = 0.05
32
+ multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search]
33
+ heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 22))
34
+ # paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 38))
35
+
36
+ for m in range(len(multiplier)):
37
+ scale = multiplier[m]
38
+ imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
39
+ imageToTest_padded, pad = util.padRightDownCorner(imageToTest, stride, padValue)
40
+ im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5
41
+ im = np.ascontiguousarray(im)
42
+
43
+ data = torch.from_numpy(im).float()
44
+ if torch.cuda.is_available():
45
+ data = data.cuda()
46
+ # data = data.permute([2, 0, 1]).unsqueeze(0).float()
47
+ with torch.no_grad():
48
+ output = self.model(data).cpu().numpy()
49
+ # output = self.model(data).numpy()q
50
+
51
+ # extract outputs, resize, and remove padding
52
+ heatmap = np.transpose(np.squeeze(output), (1, 2, 0)) # output 1 is heatmaps
53
+ heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
54
+ heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :]
55
+ heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC)
56
+
57
+ heatmap_avg += heatmap / len(multiplier)
58
+
59
+ all_peaks = []
60
+ for part in range(21):
61
+ map_ori = heatmap_avg[:, :, part]
62
+ one_heatmap = gaussian_filter(map_ori, sigma=3)
63
+ binary = np.ascontiguousarray(one_heatmap > thre, dtype=np.uint8)
64
+ # 全部小于阈值
65
+ if np.sum(binary) == 0:
66
+ all_peaks.append([0, 0])
67
+ continue
68
+ label_img, label_numbers = label(binary, return_num=True, connectivity=binary.ndim)
69
+ max_index = np.argmax([np.sum(map_ori[label_img == i]) for i in range(1, label_numbers + 1)]) + 1
70
+ label_img[label_img != max_index] = 0
71
+ map_ori[label_img == 0] = 0
72
+
73
+ y, x = util.npmax(map_ori)
74
+ all_peaks.append([x, y])
75
+ return np.array(all_peaks)
76
+
77
+ if __name__ == "__main__":
78
+ hand_estimation = Hand('../model/hand_pose_model.pth')
79
+
80
+ # test_image = '../images/hand.jpg'
81
+ test_image = '../images/hand.jpg'
82
+ oriImg = cv2.imread(test_image) # B,G,R order
83
+ peaks = hand_estimation(oriImg)
84
+ canvas = util.draw_handpose(oriImg, peaks, True)
85
+ cv2.imshow('', canvas)
86
+ cv2.waitKey(0)
ControlNet/annotator/openpose/model.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from collections import OrderedDict
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ def make_layers(block, no_relu_layers):
8
+ layers = []
9
+ for layer_name, v in block.items():
10
+ if 'pool' in layer_name:
11
+ layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1],
12
+ padding=v[2])
13
+ layers.append((layer_name, layer))
14
+ else:
15
+ conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1],
16
+ kernel_size=v[2], stride=v[3],
17
+ padding=v[4])
18
+ layers.append((layer_name, conv2d))
19
+ if layer_name not in no_relu_layers:
20
+ layers.append(('relu_'+layer_name, nn.ReLU(inplace=True)))
21
+
22
+ return nn.Sequential(OrderedDict(layers))
23
+
24
+ class bodypose_model(nn.Module):
25
+ def __init__(self):
26
+ super(bodypose_model, self).__init__()
27
+
28
+ # these layers have no relu layer
29
+ no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\
30
+ 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\
31
+ 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\
32
+ 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1']
33
+ blocks = {}
34
+ block0 = OrderedDict([
35
+ ('conv1_1', [3, 64, 3, 1, 1]),
36
+ ('conv1_2', [64, 64, 3, 1, 1]),
37
+ ('pool1_stage1', [2, 2, 0]),
38
+ ('conv2_1', [64, 128, 3, 1, 1]),
39
+ ('conv2_2', [128, 128, 3, 1, 1]),
40
+ ('pool2_stage1', [2, 2, 0]),
41
+ ('conv3_1', [128, 256, 3, 1, 1]),
42
+ ('conv3_2', [256, 256, 3, 1, 1]),
43
+ ('conv3_3', [256, 256, 3, 1, 1]),
44
+ ('conv3_4', [256, 256, 3, 1, 1]),
45
+ ('pool3_stage1', [2, 2, 0]),
46
+ ('conv4_1', [256, 512, 3, 1, 1]),
47
+ ('conv4_2', [512, 512, 3, 1, 1]),
48
+ ('conv4_3_CPM', [512, 256, 3, 1, 1]),
49
+ ('conv4_4_CPM', [256, 128, 3, 1, 1])
50
+ ])
51
+
52
+
53
+ # Stage 1
54
+ block1_1 = OrderedDict([
55
+ ('conv5_1_CPM_L1', [128, 128, 3, 1, 1]),
56
+ ('conv5_2_CPM_L1', [128, 128, 3, 1, 1]),
57
+ ('conv5_3_CPM_L1', [128, 128, 3, 1, 1]),
58
+ ('conv5_4_CPM_L1', [128, 512, 1, 1, 0]),
59
+ ('conv5_5_CPM_L1', [512, 38, 1, 1, 0])
60
+ ])
61
+
62
+ block1_2 = OrderedDict([
63
+ ('conv5_1_CPM_L2', [128, 128, 3, 1, 1]),
64
+ ('conv5_2_CPM_L2', [128, 128, 3, 1, 1]),
65
+ ('conv5_3_CPM_L2', [128, 128, 3, 1, 1]),
66
+ ('conv5_4_CPM_L2', [128, 512, 1, 1, 0]),
67
+ ('conv5_5_CPM_L2', [512, 19, 1, 1, 0])
68
+ ])
69
+ blocks['block1_1'] = block1_1
70
+ blocks['block1_2'] = block1_2
71
+
72
+ self.model0 = make_layers(block0, no_relu_layers)
73
+
74
+ # Stages 2 - 6
75
+ for i in range(2, 7):
76
+ blocks['block%d_1' % i] = OrderedDict([
77
+ ('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]),
78
+ ('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]),
79
+ ('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]),
80
+ ('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]),
81
+ ('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]),
82
+ ('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]),
83
+ ('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0])
84
+ ])
85
+
86
+ blocks['block%d_2' % i] = OrderedDict([
87
+ ('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]),
88
+ ('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]),
89
+ ('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]),
90
+ ('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]),
91
+ ('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]),
92
+ ('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]),
93
+ ('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0])
94
+ ])
95
+
96
+ for k in blocks.keys():
97
+ blocks[k] = make_layers(blocks[k], no_relu_layers)
98
+
99
+ self.model1_1 = blocks['block1_1']
100
+ self.model2_1 = blocks['block2_1']
101
+ self.model3_1 = blocks['block3_1']
102
+ self.model4_1 = blocks['block4_1']
103
+ self.model5_1 = blocks['block5_1']
104
+ self.model6_1 = blocks['block6_1']
105
+
106
+ self.model1_2 = blocks['block1_2']
107
+ self.model2_2 = blocks['block2_2']
108
+ self.model3_2 = blocks['block3_2']
109
+ self.model4_2 = blocks['block4_2']
110
+ self.model5_2 = blocks['block5_2']
111
+ self.model6_2 = blocks['block6_2']
112
+
113
+
114
+ def forward(self, x):
115
+
116
+ out1 = self.model0(x)
117
+
118
+ out1_1 = self.model1_1(out1)
119
+ out1_2 = self.model1_2(out1)
120
+ out2 = torch.cat([out1_1, out1_2, out1], 1)
121
+
122
+ out2_1 = self.model2_1(out2)
123
+ out2_2 = self.model2_2(out2)
124
+ out3 = torch.cat([out2_1, out2_2, out1], 1)
125
+
126
+ out3_1 = self.model3_1(out3)
127
+ out3_2 = self.model3_2(out3)
128
+ out4 = torch.cat([out3_1, out3_2, out1], 1)
129
+
130
+ out4_1 = self.model4_1(out4)
131
+ out4_2 = self.model4_2(out4)
132
+ out5 = torch.cat([out4_1, out4_2, out1], 1)
133
+
134
+ out5_1 = self.model5_1(out5)
135
+ out5_2 = self.model5_2(out5)
136
+ out6 = torch.cat([out5_1, out5_2, out1], 1)
137
+
138
+ out6_1 = self.model6_1(out6)
139
+ out6_2 = self.model6_2(out6)
140
+
141
+ return out6_1, out6_2
142
+
143
+ class handpose_model(nn.Module):
144
+ def __init__(self):
145
+ super(handpose_model, self).__init__()
146
+
147
+ # these layers have no relu layer
148
+ no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\
149
+ 'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6']
150
+ # stage 1
151
+ block1_0 = OrderedDict([
152
+ ('conv1_1', [3, 64, 3, 1, 1]),
153
+ ('conv1_2', [64, 64, 3, 1, 1]),
154
+ ('pool1_stage1', [2, 2, 0]),
155
+ ('conv2_1', [64, 128, 3, 1, 1]),
156
+ ('conv2_2', [128, 128, 3, 1, 1]),
157
+ ('pool2_stage1', [2, 2, 0]),
158
+ ('conv3_1', [128, 256, 3, 1, 1]),
159
+ ('conv3_2', [256, 256, 3, 1, 1]),
160
+ ('conv3_3', [256, 256, 3, 1, 1]),
161
+ ('conv3_4', [256, 256, 3, 1, 1]),
162
+ ('pool3_stage1', [2, 2, 0]),
163
+ ('conv4_1', [256, 512, 3, 1, 1]),
164
+ ('conv4_2', [512, 512, 3, 1, 1]),
165
+ ('conv4_3', [512, 512, 3, 1, 1]),
166
+ ('conv4_4', [512, 512, 3, 1, 1]),
167
+ ('conv5_1', [512, 512, 3, 1, 1]),
168
+ ('conv5_2', [512, 512, 3, 1, 1]),
169
+ ('conv5_3_CPM', [512, 128, 3, 1, 1])
170
+ ])
171
+
172
+ block1_1 = OrderedDict([
173
+ ('conv6_1_CPM', [128, 512, 1, 1, 0]),
174
+ ('conv6_2_CPM', [512, 22, 1, 1, 0])
175
+ ])
176
+
177
+ blocks = {}
178
+ blocks['block1_0'] = block1_0
179
+ blocks['block1_1'] = block1_1
180
+
181
+ # stage 2-6
182
+ for i in range(2, 7):
183
+ blocks['block%d' % i] = OrderedDict([
184
+ ('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]),
185
+ ('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]),
186
+ ('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]),
187
+ ('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]),
188
+ ('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]),
189
+ ('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]),
190
+ ('Mconv7_stage%d' % i, [128, 22, 1, 1, 0])
191
+ ])
192
+
193
+ for k in blocks.keys():
194
+ blocks[k] = make_layers(blocks[k], no_relu_layers)
195
+
196
+ self.model1_0 = blocks['block1_0']
197
+ self.model1_1 = blocks['block1_1']
198
+ self.model2 = blocks['block2']
199
+ self.model3 = blocks['block3']
200
+ self.model4 = blocks['block4']
201
+ self.model5 = blocks['block5']
202
+ self.model6 = blocks['block6']
203
+
204
+ def forward(self, x):
205
+ out1_0 = self.model1_0(x)
206
+ out1_1 = self.model1_1(out1_0)
207
+ concat_stage2 = torch.cat([out1_1, out1_0], 1)
208
+ out_stage2 = self.model2(concat_stage2)
209
+ concat_stage3 = torch.cat([out_stage2, out1_0], 1)
210
+ out_stage3 = self.model3(concat_stage3)
211
+ concat_stage4 = torch.cat([out_stage3, out1_0], 1)
212
+ out_stage4 = self.model4(concat_stage4)
213
+ concat_stage5 = torch.cat([out_stage4, out1_0], 1)
214
+ out_stage5 = self.model5(concat_stage5)
215
+ concat_stage6 = torch.cat([out_stage5, out1_0], 1)
216
+ out_stage6 = self.model6(concat_stage6)
217
+ return out_stage6
218
+
219
+
ControlNet/annotator/openpose/util.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import matplotlib
4
+ import cv2
5
+
6
+
7
+ def padRightDownCorner(img, stride, padValue):
8
+ h = img.shape[0]
9
+ w = img.shape[1]
10
+
11
+ pad = 4 * [None]
12
+ pad[0] = 0 # up
13
+ pad[1] = 0 # left
14
+ pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down
15
+ pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right
16
+
17
+ img_padded = img
18
+ pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1))
19
+ img_padded = np.concatenate((pad_up, img_padded), axis=0)
20
+ pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1))
21
+ img_padded = np.concatenate((pad_left, img_padded), axis=1)
22
+ pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1))
23
+ img_padded = np.concatenate((img_padded, pad_down), axis=0)
24
+ pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1))
25
+ img_padded = np.concatenate((img_padded, pad_right), axis=1)
26
+
27
+ return img_padded, pad
28
+
29
+ # transfer caffe model to pytorch which will match the layer name
30
+ def transfer(model, model_weights):
31
+ transfered_model_weights = {}
32
+ for weights_name in model.state_dict().keys():
33
+ transfered_model_weights[weights_name] = model_weights['.'.join(weights_name.split('.')[1:])]
34
+ return transfered_model_weights
35
+
36
+ # draw the body keypoint and lims
37
+ def draw_bodypose(canvas, candidate, subset):
38
+ stickwidth = 4
39
+ limbSeq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9], [9, 10], \
40
+ [10, 11], [2, 12], [12, 13], [13, 14], [2, 1], [1, 15], [15, 17], \
41
+ [1, 16], [16, 18], [3, 17], [6, 18]]
42
+
43
+ colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
44
+ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \
45
+ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
46
+ for i in range(18):
47
+ for n in range(len(subset)):
48
+ index = int(subset[n][i])
49
+ if index == -1:
50
+ continue
51
+ x, y = candidate[index][0:2]
52
+ cv2.circle(canvas, (int(x), int(y)), 4, colors[i], thickness=-1)
53
+ for i in range(17):
54
+ for n in range(len(subset)):
55
+ index = subset[n][np.array(limbSeq[i]) - 1]
56
+ if -1 in index:
57
+ continue
58
+ cur_canvas = canvas.copy()
59
+ Y = candidate[index.astype(int), 0]
60
+ X = candidate[index.astype(int), 1]
61
+ mX = np.mean(X)
62
+ mY = np.mean(Y)
63
+ length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5
64
+ angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1]))
65
+ polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1)
66
+ cv2.fillConvexPoly(cur_canvas, polygon, colors[i])
67
+ canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
68
+ # plt.imsave("preview.jpg", canvas[:, :, [2, 1, 0]])
69
+ # plt.imshow(canvas[:, :, [2, 1, 0]])
70
+ return canvas
71
+
72
+
73
+ # image drawed by opencv is not good.
74
+ def draw_handpose(canvas, all_hand_peaks, show_number=False):
75
+ edges = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], [7, 8], [0, 9], [9, 10], \
76
+ [10, 11], [11, 12], [0, 13], [13, 14], [14, 15], [15, 16], [0, 17], [17, 18], [18, 19], [19, 20]]
77
+
78
+ for peaks in all_hand_peaks:
79
+ for ie, e in enumerate(edges):
80
+ if np.sum(np.all(peaks[e], axis=1)==0)==0:
81
+ x1, y1 = peaks[e[0]]
82
+ x2, y2 = peaks[e[1]]
83
+ cv2.line(canvas, (x1, y1), (x2, y2), matplotlib.colors.hsv_to_rgb([ie/float(len(edges)), 1.0, 1.0])*255, thickness=2)
84
+
85
+ for i, keyponit in enumerate(peaks):
86
+ x, y = keyponit
87
+ cv2.circle(canvas, (x, y), 4, (0, 0, 255), thickness=-1)
88
+ if show_number:
89
+ cv2.putText(canvas, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), lineType=cv2.LINE_AA)
90
+ return canvas
91
+
92
+ # detect hand according to body pose keypoints
93
+ # please refer to https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/hand/handDetector.cpp
94
+ def handDetect(candidate, subset, oriImg):
95
+ # right hand: wrist 4, elbow 3, shoulder 2
96
+ # left hand: wrist 7, elbow 6, shoulder 5
97
+ ratioWristElbow = 0.33
98
+ detect_result = []
99
+ image_height, image_width = oriImg.shape[0:2]
100
+ for person in subset.astype(int):
101
+ # if any of three not detected
102
+ has_left = np.sum(person[[5, 6, 7]] == -1) == 0
103
+ has_right = np.sum(person[[2, 3, 4]] == -1) == 0
104
+ if not (has_left or has_right):
105
+ continue
106
+ hands = []
107
+ #left hand
108
+ if has_left:
109
+ left_shoulder_index, left_elbow_index, left_wrist_index = person[[5, 6, 7]]
110
+ x1, y1 = candidate[left_shoulder_index][:2]
111
+ x2, y2 = candidate[left_elbow_index][:2]
112
+ x3, y3 = candidate[left_wrist_index][:2]
113
+ hands.append([x1, y1, x2, y2, x3, y3, True])
114
+ # right hand
115
+ if has_right:
116
+ right_shoulder_index, right_elbow_index, right_wrist_index = person[[2, 3, 4]]
117
+ x1, y1 = candidate[right_shoulder_index][:2]
118
+ x2, y2 = candidate[right_elbow_index][:2]
119
+ x3, y3 = candidate[right_wrist_index][:2]
120
+ hands.append([x1, y1, x2, y2, x3, y3, False])
121
+
122
+ for x1, y1, x2, y2, x3, y3, is_left in hands:
123
+ # pos_hand = pos_wrist + ratio * (pos_wrist - pos_elbox) = (1 + ratio) * pos_wrist - ratio * pos_elbox
124
+ # handRectangle.x = posePtr[wrist*3] + ratioWristElbow * (posePtr[wrist*3] - posePtr[elbow*3]);
125
+ # handRectangle.y = posePtr[wrist*3+1] + ratioWristElbow * (posePtr[wrist*3+1] - posePtr[elbow*3+1]);
126
+ # const auto distanceWristElbow = getDistance(poseKeypoints, person, wrist, elbow);
127
+ # const auto distanceElbowShoulder = getDistance(poseKeypoints, person, elbow, shoulder);
128
+ # handRectangle.width = 1.5f * fastMax(distanceWristElbow, 0.9f * distanceElbowShoulder);
129
+ x = x3 + ratioWristElbow * (x3 - x2)
130
+ y = y3 + ratioWristElbow * (y3 - y2)
131
+ distanceWristElbow = math.sqrt((x3 - x2) ** 2 + (y3 - y2) ** 2)
132
+ distanceElbowShoulder = math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
133
+ width = 1.5 * max(distanceWristElbow, 0.9 * distanceElbowShoulder)
134
+ # x-y refers to the center --> offset to topLeft point
135
+ # handRectangle.x -= handRectangle.width / 2.f;
136
+ # handRectangle.y -= handRectangle.height / 2.f;
137
+ x -= width / 2
138
+ y -= width / 2 # width = height
139
+ # overflow the image
140
+ if x < 0: x = 0
141
+ if y < 0: y = 0
142
+ width1 = width
143
+ width2 = width
144
+ if x + width > image_width: width1 = image_width - x
145
+ if y + width > image_height: width2 = image_height - y
146
+ width = min(width1, width2)
147
+ # the max hand box value is 20 pixels
148
+ if width >= 20:
149
+ detect_result.append([int(x), int(y), int(width), is_left])
150
+
151
+ '''
152
+ return value: [[x, y, w, True if left hand else False]].
153
+ width=height since the network require squared input.
154
+ x, y is the coordinate of top left
155
+ '''
156
+ return detect_result
157
+
158
+ # get max index of 2d array
159
+ def npmax(array):
160
+ arrayindex = array.argmax(1)
161
+ arrayvalue = array.max(1)
162
+ i = arrayvalue.argmax()
163
+ j = arrayindex[i]
164
+ return i, j
ControlNet/annotator/uniformer/__init__.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from annotator.uniformer.mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot
4
+ from annotator.uniformer.mmseg.core.evaluation import get_palette
5
+ from annotator.util import annotator_ckpts_path
6
+
7
+
8
+ checkpoint_file = "https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/upernet_global_small.pth"
9
+
10
+
11
+ class UniformerDetector:
12
+ def __init__(self):
13
+ modelpath = os.path.join(annotator_ckpts_path, "upernet_global_small.pth")
14
+ if not os.path.exists(modelpath):
15
+ from basicsr.utils.download_util import load_file_from_url
16
+ load_file_from_url(checkpoint_file, model_dir=annotator_ckpts_path)
17
+ config_file = os.path.join(os.path.dirname(annotator_ckpts_path), "uniformer", "exp", "upernet_global_small", "config.py")
18
+ self.model = init_segmentor(config_file, modelpath).cuda()
19
+
20
+ def __call__(self, img):
21
+ result = inference_segmentor(self.model, img)
22
+ res_img = show_result_pyplot(self.model, img, result, get_palette('ade'), opacity=1)
23
+ return res_img
ControlNet/annotator/uniformer/configs/_base_/datasets/ade20k.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'ADE20KDataset'
3
+ data_root = 'data/ade/ADEChallengeData2016'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ crop_size = (512, 512)
7
+ train_pipeline = [
8
+ dict(type='LoadImageFromFile'),
9
+ dict(type='LoadAnnotations', reduce_zero_label=True),
10
+ dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
11
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
12
+ dict(type='RandomFlip', prob=0.5),
13
+ dict(type='PhotoMetricDistortion'),
14
+ dict(type='Normalize', **img_norm_cfg),
15
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
16
+ dict(type='DefaultFormatBundle'),
17
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
18
+ ]
19
+ test_pipeline = [
20
+ dict(type='LoadImageFromFile'),
21
+ dict(
22
+ type='MultiScaleFlipAug',
23
+ img_scale=(2048, 512),
24
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
25
+ flip=False,
26
+ transforms=[
27
+ dict(type='Resize', keep_ratio=True),
28
+ dict(type='RandomFlip'),
29
+ dict(type='Normalize', **img_norm_cfg),
30
+ dict(type='ImageToTensor', keys=['img']),
31
+ dict(type='Collect', keys=['img']),
32
+ ])
33
+ ]
34
+ data = dict(
35
+ samples_per_gpu=4,
36
+ workers_per_gpu=4,
37
+ train=dict(
38
+ type=dataset_type,
39
+ data_root=data_root,
40
+ img_dir='images/training',
41
+ ann_dir='annotations/training',
42
+ pipeline=train_pipeline),
43
+ val=dict(
44
+ type=dataset_type,
45
+ data_root=data_root,
46
+ img_dir='images/validation',
47
+ ann_dir='annotations/validation',
48
+ pipeline=test_pipeline),
49
+ test=dict(
50
+ type=dataset_type,
51
+ data_root=data_root,
52
+ img_dir='images/validation',
53
+ ann_dir='annotations/validation',
54
+ pipeline=test_pipeline))
ControlNet/annotator/uniformer/configs/_base_/datasets/chase_db1.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'ChaseDB1Dataset'
3
+ data_root = 'data/CHASE_DB1'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ img_scale = (960, 999)
7
+ crop_size = (128, 128)
8
+ train_pipeline = [
9
+ dict(type='LoadImageFromFile'),
10
+ dict(type='LoadAnnotations'),
11
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
12
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
13
+ dict(type='RandomFlip', prob=0.5),
14
+ dict(type='PhotoMetricDistortion'),
15
+ dict(type='Normalize', **img_norm_cfg),
16
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
17
+ dict(type='DefaultFormatBundle'),
18
+ dict(type='Collect', keys=['img', 'gt_semantic_seg'])
19
+ ]
20
+ test_pipeline = [
21
+ dict(type='LoadImageFromFile'),
22
+ dict(
23
+ type='MultiScaleFlipAug',
24
+ img_scale=img_scale,
25
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
26
+ flip=False,
27
+ transforms=[
28
+ dict(type='Resize', keep_ratio=True),
29
+ dict(type='RandomFlip'),
30
+ dict(type='Normalize', **img_norm_cfg),
31
+ dict(type='ImageToTensor', keys=['img']),
32
+ dict(type='Collect', keys=['img'])
33
+ ])
34
+ ]
35
+
36
+ data = dict(
37
+ samples_per_gpu=4,
38
+ workers_per_gpu=4,
39
+ train=dict(
40
+ type='RepeatDataset',
41
+ times=40000,
42
+ dataset=dict(
43
+ type=dataset_type,
44
+ data_root=data_root,
45
+ img_dir='images/training',
46
+ ann_dir='annotations/training',
47
+ pipeline=train_pipeline)),
48
+ val=dict(
49
+ type=dataset_type,
50
+ data_root=data_root,
51
+ img_dir='images/validation',
52
+ ann_dir='annotations/validation',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='images/validation',
58
+ ann_dir='annotations/validation',
59
+ pipeline=test_pipeline))
ControlNet/annotator/uniformer/configs/_base_/datasets/cityscapes.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'CityscapesDataset'
3
+ data_root = 'data/cityscapes/'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ crop_size = (512, 1024)
7
+ train_pipeline = [
8
+ dict(type='LoadImageFromFile'),
9
+ dict(type='LoadAnnotations'),
10
+ dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
11
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
12
+ dict(type='RandomFlip', prob=0.5),
13
+ dict(type='PhotoMetricDistortion'),
14
+ dict(type='Normalize', **img_norm_cfg),
15
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
16
+ dict(type='DefaultFormatBundle'),
17
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
18
+ ]
19
+ test_pipeline = [
20
+ dict(type='LoadImageFromFile'),
21
+ dict(
22
+ type='MultiScaleFlipAug',
23
+ img_scale=(2048, 1024),
24
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
25
+ flip=False,
26
+ transforms=[
27
+ dict(type='Resize', keep_ratio=True),
28
+ dict(type='RandomFlip'),
29
+ dict(type='Normalize', **img_norm_cfg),
30
+ dict(type='ImageToTensor', keys=['img']),
31
+ dict(type='Collect', keys=['img']),
32
+ ])
33
+ ]
34
+ data = dict(
35
+ samples_per_gpu=2,
36
+ workers_per_gpu=2,
37
+ train=dict(
38
+ type=dataset_type,
39
+ data_root=data_root,
40
+ img_dir='leftImg8bit/train',
41
+ ann_dir='gtFine/train',
42
+ pipeline=train_pipeline),
43
+ val=dict(
44
+ type=dataset_type,
45
+ data_root=data_root,
46
+ img_dir='leftImg8bit/val',
47
+ ann_dir='gtFine/val',
48
+ pipeline=test_pipeline),
49
+ test=dict(
50
+ type=dataset_type,
51
+ data_root=data_root,
52
+ img_dir='leftImg8bit/val',
53
+ ann_dir='gtFine/val',
54
+ pipeline=test_pipeline))
ControlNet/annotator/uniformer/configs/_base_/datasets/cityscapes_769x769.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = './cityscapes.py'
2
+ img_norm_cfg = dict(
3
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
4
+ crop_size = (769, 769)
5
+ train_pipeline = [
6
+ dict(type='LoadImageFromFile'),
7
+ dict(type='LoadAnnotations'),
8
+ dict(type='Resize', img_scale=(2049, 1025), ratio_range=(0.5, 2.0)),
9
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
10
+ dict(type='RandomFlip', prob=0.5),
11
+ dict(type='PhotoMetricDistortion'),
12
+ dict(type='Normalize', **img_norm_cfg),
13
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
14
+ dict(type='DefaultFormatBundle'),
15
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
16
+ ]
17
+ test_pipeline = [
18
+ dict(type='LoadImageFromFile'),
19
+ dict(
20
+ type='MultiScaleFlipAug',
21
+ img_scale=(2049, 1025),
22
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
23
+ flip=False,
24
+ transforms=[
25
+ dict(type='Resize', keep_ratio=True),
26
+ dict(type='RandomFlip'),
27
+ dict(type='Normalize', **img_norm_cfg),
28
+ dict(type='ImageToTensor', keys=['img']),
29
+ dict(type='Collect', keys=['img']),
30
+ ])
31
+ ]
32
+ data = dict(
33
+ train=dict(pipeline=train_pipeline),
34
+ val=dict(pipeline=test_pipeline),
35
+ test=dict(pipeline=test_pipeline))
ControlNet/annotator/uniformer/configs/_base_/datasets/drive.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'DRIVEDataset'
3
+ data_root = 'data/DRIVE'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ img_scale = (584, 565)
7
+ crop_size = (64, 64)
8
+ train_pipeline = [
9
+ dict(type='LoadImageFromFile'),
10
+ dict(type='LoadAnnotations'),
11
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
12
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
13
+ dict(type='RandomFlip', prob=0.5),
14
+ dict(type='PhotoMetricDistortion'),
15
+ dict(type='Normalize', **img_norm_cfg),
16
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
17
+ dict(type='DefaultFormatBundle'),
18
+ dict(type='Collect', keys=['img', 'gt_semantic_seg'])
19
+ ]
20
+ test_pipeline = [
21
+ dict(type='LoadImageFromFile'),
22
+ dict(
23
+ type='MultiScaleFlipAug',
24
+ img_scale=img_scale,
25
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
26
+ flip=False,
27
+ transforms=[
28
+ dict(type='Resize', keep_ratio=True),
29
+ dict(type='RandomFlip'),
30
+ dict(type='Normalize', **img_norm_cfg),
31
+ dict(type='ImageToTensor', keys=['img']),
32
+ dict(type='Collect', keys=['img'])
33
+ ])
34
+ ]
35
+
36
+ data = dict(
37
+ samples_per_gpu=4,
38
+ workers_per_gpu=4,
39
+ train=dict(
40
+ type='RepeatDataset',
41
+ times=40000,
42
+ dataset=dict(
43
+ type=dataset_type,
44
+ data_root=data_root,
45
+ img_dir='images/training',
46
+ ann_dir='annotations/training',
47
+ pipeline=train_pipeline)),
48
+ val=dict(
49
+ type=dataset_type,
50
+ data_root=data_root,
51
+ img_dir='images/validation',
52
+ ann_dir='annotations/validation',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='images/validation',
58
+ ann_dir='annotations/validation',
59
+ pipeline=test_pipeline))
ControlNet/annotator/uniformer/configs/_base_/datasets/hrf.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'HRFDataset'
3
+ data_root = 'data/HRF'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ img_scale = (2336, 3504)
7
+ crop_size = (256, 256)
8
+ train_pipeline = [
9
+ dict(type='LoadImageFromFile'),
10
+ dict(type='LoadAnnotations'),
11
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
12
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
13
+ dict(type='RandomFlip', prob=0.5),
14
+ dict(type='PhotoMetricDistortion'),
15
+ dict(type='Normalize', **img_norm_cfg),
16
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
17
+ dict(type='DefaultFormatBundle'),
18
+ dict(type='Collect', keys=['img', 'gt_semantic_seg'])
19
+ ]
20
+ test_pipeline = [
21
+ dict(type='LoadImageFromFile'),
22
+ dict(
23
+ type='MultiScaleFlipAug',
24
+ img_scale=img_scale,
25
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
26
+ flip=False,
27
+ transforms=[
28
+ dict(type='Resize', keep_ratio=True),
29
+ dict(type='RandomFlip'),
30
+ dict(type='Normalize', **img_norm_cfg),
31
+ dict(type='ImageToTensor', keys=['img']),
32
+ dict(type='Collect', keys=['img'])
33
+ ])
34
+ ]
35
+
36
+ data = dict(
37
+ samples_per_gpu=4,
38
+ workers_per_gpu=4,
39
+ train=dict(
40
+ type='RepeatDataset',
41
+ times=40000,
42
+ dataset=dict(
43
+ type=dataset_type,
44
+ data_root=data_root,
45
+ img_dir='images/training',
46
+ ann_dir='annotations/training',
47
+ pipeline=train_pipeline)),
48
+ val=dict(
49
+ type=dataset_type,
50
+ data_root=data_root,
51
+ img_dir='images/validation',
52
+ ann_dir='annotations/validation',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='images/validation',
58
+ ann_dir='annotations/validation',
59
+ pipeline=test_pipeline))
ControlNet/annotator/uniformer/configs/_base_/datasets/pascal_context.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'PascalContextDataset'
3
+ data_root = 'data/VOCdevkit/VOC2010/'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+
7
+ img_scale = (520, 520)
8
+ crop_size = (480, 480)
9
+
10
+ train_pipeline = [
11
+ dict(type='LoadImageFromFile'),
12
+ dict(type='LoadAnnotations'),
13
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
14
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
15
+ dict(type='RandomFlip', prob=0.5),
16
+ dict(type='PhotoMetricDistortion'),
17
+ dict(type='Normalize', **img_norm_cfg),
18
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
19
+ dict(type='DefaultFormatBundle'),
20
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
21
+ ]
22
+ test_pipeline = [
23
+ dict(type='LoadImageFromFile'),
24
+ dict(
25
+ type='MultiScaleFlipAug',
26
+ img_scale=img_scale,
27
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
28
+ flip=False,
29
+ transforms=[
30
+ dict(type='Resize', keep_ratio=True),
31
+ dict(type='RandomFlip'),
32
+ dict(type='Normalize', **img_norm_cfg),
33
+ dict(type='ImageToTensor', keys=['img']),
34
+ dict(type='Collect', keys=['img']),
35
+ ])
36
+ ]
37
+ data = dict(
38
+ samples_per_gpu=4,
39
+ workers_per_gpu=4,
40
+ train=dict(
41
+ type=dataset_type,
42
+ data_root=data_root,
43
+ img_dir='JPEGImages',
44
+ ann_dir='SegmentationClassContext',
45
+ split='ImageSets/SegmentationContext/train.txt',
46
+ pipeline=train_pipeline),
47
+ val=dict(
48
+ type=dataset_type,
49
+ data_root=data_root,
50
+ img_dir='JPEGImages',
51
+ ann_dir='SegmentationClassContext',
52
+ split='ImageSets/SegmentationContext/val.txt',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='JPEGImages',
58
+ ann_dir='SegmentationClassContext',
59
+ split='ImageSets/SegmentationContext/val.txt',
60
+ pipeline=test_pipeline))
ControlNet/annotator/uniformer/configs/_base_/datasets/pascal_context_59.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'PascalContextDataset59'
3
+ data_root = 'data/VOCdevkit/VOC2010/'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+
7
+ img_scale = (520, 520)
8
+ crop_size = (480, 480)
9
+
10
+ train_pipeline = [
11
+ dict(type='LoadImageFromFile'),
12
+ dict(type='LoadAnnotations', reduce_zero_label=True),
13
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
14
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
15
+ dict(type='RandomFlip', prob=0.5),
16
+ dict(type='PhotoMetricDistortion'),
17
+ dict(type='Normalize', **img_norm_cfg),
18
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
19
+ dict(type='DefaultFormatBundle'),
20
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
21
+ ]
22
+ test_pipeline = [
23
+ dict(type='LoadImageFromFile'),
24
+ dict(
25
+ type='MultiScaleFlipAug',
26
+ img_scale=img_scale,
27
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
28
+ flip=False,
29
+ transforms=[
30
+ dict(type='Resize', keep_ratio=True),
31
+ dict(type='RandomFlip'),
32
+ dict(type='Normalize', **img_norm_cfg),
33
+ dict(type='ImageToTensor', keys=['img']),
34
+ dict(type='Collect', keys=['img']),
35
+ ])
36
+ ]
37
+ data = dict(
38
+ samples_per_gpu=4,
39
+ workers_per_gpu=4,
40
+ train=dict(
41
+ type=dataset_type,
42
+ data_root=data_root,
43
+ img_dir='JPEGImages',
44
+ ann_dir='SegmentationClassContext',
45
+ split='ImageSets/SegmentationContext/train.txt',
46
+ pipeline=train_pipeline),
47
+ val=dict(
48
+ type=dataset_type,
49
+ data_root=data_root,
50
+ img_dir='JPEGImages',
51
+ ann_dir='SegmentationClassContext',
52
+ split='ImageSets/SegmentationContext/val.txt',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='JPEGImages',
58
+ ann_dir='SegmentationClassContext',
59
+ split='ImageSets/SegmentationContext/val.txt',
60
+ pipeline=test_pipeline))
ControlNet/annotator/uniformer/configs/_base_/datasets/pascal_voc12.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'PascalVOCDataset'
3
+ data_root = 'data/VOCdevkit/VOC2012'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ crop_size = (512, 512)
7
+ train_pipeline = [
8
+ dict(type='LoadImageFromFile'),
9
+ dict(type='LoadAnnotations'),
10
+ dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
11
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
12
+ dict(type='RandomFlip', prob=0.5),
13
+ dict(type='PhotoMetricDistortion'),
14
+ dict(type='Normalize', **img_norm_cfg),
15
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
16
+ dict(type='DefaultFormatBundle'),
17
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
18
+ ]
19
+ test_pipeline = [
20
+ dict(type='LoadImageFromFile'),
21
+ dict(
22
+ type='MultiScaleFlipAug',
23
+ img_scale=(2048, 512),
24
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
25
+ flip=False,
26
+ transforms=[
27
+ dict(type='Resize', keep_ratio=True),
28
+ dict(type='RandomFlip'),
29
+ dict(type='Normalize', **img_norm_cfg),
30
+ dict(type='ImageToTensor', keys=['img']),
31
+ dict(type='Collect', keys=['img']),
32
+ ])
33
+ ]
34
+ data = dict(
35
+ samples_per_gpu=4,
36
+ workers_per_gpu=4,
37
+ train=dict(
38
+ type=dataset_type,
39
+ data_root=data_root,
40
+ img_dir='JPEGImages',
41
+ ann_dir='SegmentationClass',
42
+ split='ImageSets/Segmentation/train.txt',
43
+ pipeline=train_pipeline),
44
+ val=dict(
45
+ type=dataset_type,
46
+ data_root=data_root,
47
+ img_dir='JPEGImages',
48
+ ann_dir='SegmentationClass',
49
+ split='ImageSets/Segmentation/val.txt',
50
+ pipeline=test_pipeline),
51
+ test=dict(
52
+ type=dataset_type,
53
+ data_root=data_root,
54
+ img_dir='JPEGImages',
55
+ ann_dir='SegmentationClass',
56
+ split='ImageSets/Segmentation/val.txt',
57
+ pipeline=test_pipeline))
ControlNet/annotator/uniformer/configs/_base_/datasets/pascal_voc12_aug.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = './pascal_voc12.py'
2
+ # dataset settings
3
+ data = dict(
4
+ train=dict(
5
+ ann_dir=['SegmentationClass', 'SegmentationClassAug'],
6
+ split=[
7
+ 'ImageSets/Segmentation/train.txt',
8
+ 'ImageSets/Segmentation/aug.txt'
9
+ ]))
ControlNet/annotator/uniformer/configs/_base_/datasets/stare.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'STAREDataset'
3
+ data_root = 'data/STARE'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ img_scale = (605, 700)
7
+ crop_size = (128, 128)
8
+ train_pipeline = [
9
+ dict(type='LoadImageFromFile'),
10
+ dict(type='LoadAnnotations'),
11
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
12
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
13
+ dict(type='RandomFlip', prob=0.5),
14
+ dict(type='PhotoMetricDistortion'),
15
+ dict(type='Normalize', **img_norm_cfg),
16
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
17
+ dict(type='DefaultFormatBundle'),
18
+ dict(type='Collect', keys=['img', 'gt_semantic_seg'])
19
+ ]
20
+ test_pipeline = [
21
+ dict(type='LoadImageFromFile'),
22
+ dict(
23
+ type='MultiScaleFlipAug',
24
+ img_scale=img_scale,
25
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
26
+ flip=False,
27
+ transforms=[
28
+ dict(type='Resize', keep_ratio=True),
29
+ dict(type='RandomFlip'),
30
+ dict(type='Normalize', **img_norm_cfg),
31
+ dict(type='ImageToTensor', keys=['img']),
32
+ dict(type='Collect', keys=['img'])
33
+ ])
34
+ ]
35
+
36
+ data = dict(
37
+ samples_per_gpu=4,
38
+ workers_per_gpu=4,
39
+ train=dict(
40
+ type='RepeatDataset',
41
+ times=40000,
42
+ dataset=dict(
43
+ type=dataset_type,
44
+ data_root=data_root,
45
+ img_dir='images/training',
46
+ ann_dir='annotations/training',
47
+ pipeline=train_pipeline)),
48
+ val=dict(
49
+ type=dataset_type,
50
+ data_root=data_root,
51
+ img_dir='images/validation',
52
+ ann_dir='annotations/validation',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='images/validation',
58
+ ann_dir='annotations/validation',
59
+ pipeline=test_pipeline))
ControlNet/annotator/uniformer/configs/_base_/default_runtime.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # yapf:disable
2
+ log_config = dict(
3
+ interval=50,
4
+ hooks=[
5
+ dict(type='TextLoggerHook', by_epoch=False),
6
+ # dict(type='TensorboardLoggerHook')
7
+ ])
8
+ # yapf:enable
9
+ dist_params = dict(backend='nccl')
10
+ log_level = 'INFO'
11
+ load_from = None
12
+ resume_from = None
13
+ workflow = [('train', 1)]
14
+ cudnn_benchmark = True
ControlNet/annotator/uniformer/configs/_base_/models/ann_r50-d8.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='ANNHead',
19
+ in_channels=[1024, 2048],
20
+ in_index=[2, 3],
21
+ channels=512,
22
+ project_channels=256,
23
+ query_scales=(1, ),
24
+ key_pool_scales=(1, 3, 6, 8),
25
+ dropout_ratio=0.1,
26
+ num_classes=19,
27
+ norm_cfg=norm_cfg,
28
+ align_corners=False,
29
+ loss_decode=dict(
30
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
31
+ auxiliary_head=dict(
32
+ type='FCNHead',
33
+ in_channels=1024,
34
+ in_index=2,
35
+ channels=256,
36
+ num_convs=1,
37
+ concat_input=False,
38
+ dropout_ratio=0.1,
39
+ num_classes=19,
40
+ norm_cfg=norm_cfg,
41
+ align_corners=False,
42
+ loss_decode=dict(
43
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
44
+ # model training and testing settings
45
+ train_cfg=dict(),
46
+ test_cfg=dict(mode='whole'))
ControlNet/annotator/uniformer/configs/_base_/models/apcnet_r50-d8.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='APCHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ pool_scales=(1, 2, 3, 6),
23
+ dropout_ratio=0.1,
24
+ num_classes=19,
25
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
26
+ align_corners=False,
27
+ loss_decode=dict(
28
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
29
+ auxiliary_head=dict(
30
+ type='FCNHead',
31
+ in_channels=1024,
32
+ in_index=2,
33
+ channels=256,
34
+ num_convs=1,
35
+ concat_input=False,
36
+ dropout_ratio=0.1,
37
+ num_classes=19,
38
+ norm_cfg=norm_cfg,
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
42
+ # model training and testing settings
43
+ train_cfg=dict(),
44
+ test_cfg=dict(mode='whole'))
ControlNet/annotator/uniformer/configs/_base_/models/ccnet_r50-d8.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='CCHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ recurrence=2,
23
+ dropout_ratio=0.1,
24
+ num_classes=19,
25
+ norm_cfg=norm_cfg,
26
+ align_corners=False,
27
+ loss_decode=dict(
28
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
29
+ auxiliary_head=dict(
30
+ type='FCNHead',
31
+ in_channels=1024,
32
+ in_index=2,
33
+ channels=256,
34
+ num_convs=1,
35
+ concat_input=False,
36
+ dropout_ratio=0.1,
37
+ num_classes=19,
38
+ norm_cfg=norm_cfg,
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
42
+ # model training and testing settings
43
+ train_cfg=dict(),
44
+ test_cfg=dict(mode='whole'))
ControlNet/annotator/uniformer/configs/_base_/models/cgnet.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ backbone=dict(
6
+ type='CGNet',
7
+ norm_cfg=norm_cfg,
8
+ in_channels=3,
9
+ num_channels=(32, 64, 128),
10
+ num_blocks=(3, 21),
11
+ dilations=(2, 4),
12
+ reductions=(8, 16)),
13
+ decode_head=dict(
14
+ type='FCNHead',
15
+ in_channels=256,
16
+ in_index=2,
17
+ channels=256,
18
+ num_convs=0,
19
+ concat_input=False,
20
+ dropout_ratio=0,
21
+ num_classes=19,
22
+ norm_cfg=norm_cfg,
23
+ loss_decode=dict(
24
+ type='CrossEntropyLoss',
25
+ use_sigmoid=False,
26
+ loss_weight=1.0,
27
+ class_weight=[
28
+ 2.5959933, 6.7415504, 3.5354059, 9.8663225, 9.690899, 9.369352,
29
+ 10.289121, 9.953208, 4.3097677, 9.490387, 7.674431, 9.396905,
30
+ 10.347791, 6.3927646, 10.226669, 10.241062, 10.280587,
31
+ 10.396974, 10.055647
32
+ ])),
33
+ # model training and testing settings
34
+ train_cfg=dict(sampler=None),
35
+ test_cfg=dict(mode='whole'))
ControlNet/annotator/uniformer/configs/_base_/models/danet_r50-d8.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='DAHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ pam_channels=64,
23
+ dropout_ratio=0.1,
24
+ num_classes=19,
25
+ norm_cfg=norm_cfg,
26
+ align_corners=False,
27
+ loss_decode=dict(
28
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
29
+ auxiliary_head=dict(
30
+ type='FCNHead',
31
+ in_channels=1024,
32
+ in_index=2,
33
+ channels=256,
34
+ num_convs=1,
35
+ concat_input=False,
36
+ dropout_ratio=0.1,
37
+ num_classes=19,
38
+ norm_cfg=norm_cfg,
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
42
+ # model training and testing settings
43
+ train_cfg=dict(),
44
+ test_cfg=dict(mode='whole'))
ControlNet/annotator/uniformer/configs/_base_/models/deeplabv3_r50-d8.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='ASPPHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ dilations=(1, 12, 24, 36),
23
+ dropout_ratio=0.1,
24
+ num_classes=19,
25
+ norm_cfg=norm_cfg,
26
+ align_corners=False,
27
+ loss_decode=dict(
28
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
29
+ auxiliary_head=dict(
30
+ type='FCNHead',
31
+ in_channels=1024,
32
+ in_index=2,
33
+ channels=256,
34
+ num_convs=1,
35
+ concat_input=False,
36
+ dropout_ratio=0.1,
37
+ num_classes=19,
38
+ norm_cfg=norm_cfg,
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
42
+ # model training and testing settings
43
+ train_cfg=dict(),
44
+ test_cfg=dict(mode='whole'))
ControlNet/annotator/uniformer/configs/_base_/models/deeplabv3_unet_s5-d16.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained=None,
6
+ backbone=dict(
7
+ type='UNet',
8
+ in_channels=3,
9
+ base_channels=64,
10
+ num_stages=5,
11
+ strides=(1, 1, 1, 1, 1),
12
+ enc_num_convs=(2, 2, 2, 2, 2),
13
+ dec_num_convs=(2, 2, 2, 2),
14
+ downsamples=(True, True, True, True),
15
+ enc_dilations=(1, 1, 1, 1, 1),
16
+ dec_dilations=(1, 1, 1, 1),
17
+ with_cp=False,
18
+ conv_cfg=None,
19
+ norm_cfg=norm_cfg,
20
+ act_cfg=dict(type='ReLU'),
21
+ upsample_cfg=dict(type='InterpConv'),
22
+ norm_eval=False),
23
+ decode_head=dict(
24
+ type='ASPPHead',
25
+ in_channels=64,
26
+ in_index=4,
27
+ channels=16,
28
+ dilations=(1, 12, 24, 36),
29
+ dropout_ratio=0.1,
30
+ num_classes=2,
31
+ norm_cfg=norm_cfg,
32
+ align_corners=False,
33
+ loss_decode=dict(
34
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
35
+ auxiliary_head=dict(
36
+ type='FCNHead',
37
+ in_channels=128,
38
+ in_index=3,
39
+ channels=64,
40
+ num_convs=1,
41
+ concat_input=False,
42
+ dropout_ratio=0.1,
43
+ num_classes=2,
44
+ norm_cfg=norm_cfg,
45
+ align_corners=False,
46
+ loss_decode=dict(
47
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
48
+ # model training and testing settings
49
+ train_cfg=dict(),
50
+ test_cfg=dict(mode='slide', crop_size=256, stride=170))