from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline from diffusers import EulerAncestralDiscreteScheduler from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering from transformers import AutoImageProcessor, UperNetForSemanticSegmentation import os import random import torch import cv2 import uuid from PIL import Image, ImageOps import numpy as np from pytorch_lightning import seed_everything import math from langchain.llms.openai import OpenAI # Grounding DINO import groundingdino.datasets.transforms as T from groundingdino.models import build_model from groundingdino.util import box_ops from groundingdino.util.slconfig import SLConfig from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap # segment anything from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator import matplotlib.pyplot as plt import wget def prompts(name, description): def decorator(func): func.name = name func.description = description return func return decorator def blend_gt2pt(old_image, new_image, sigma=0.15, steps=100): new_size = new_image.size old_size = old_image.size easy_img = np.array(new_image) gt_img_array = np.array(old_image) pos_w = (new_size[0] - old_size[0]) // 2 pos_h = (new_size[1] - old_size[1]) // 2 kernel_h = cv2.getGaussianKernel(old_size[1], old_size[1] * sigma) kernel_w = cv2.getGaussianKernel(old_size[0], old_size[0] * sigma) kernel = np.multiply(kernel_h, np.transpose(kernel_w)) kernel[steps:-steps, steps:-steps] = 1 kernel[:steps, :steps] = kernel[:steps, :steps] / kernel[steps - 1, steps - 1] kernel[:steps, -steps:] = kernel[:steps, -steps:] / kernel[steps - 1, -(steps)] kernel[-steps:, :steps] = kernel[-steps:, :steps] / kernel[-steps, steps - 1] kernel[-steps:, -steps:] = kernel[-steps:, -steps:] / kernel[-steps, -steps] kernel = np.expand_dims(kernel, 2) kernel = np.repeat(kernel, 3, 2) weight = np.linspace(0, 1, steps) top = np.expand_dims(weight, 1) top = np.repeat(top, old_size[0] - 2 * steps, 1) top = np.expand_dims(top, 2) top = np.repeat(top, 3, 2) weight = np.linspace(1, 0, steps) down = np.expand_dims(weight, 1) down = np.repeat(down, old_size[0] - 2 * steps, 1) down = np.expand_dims(down, 2) down = np.repeat(down, 3, 2) weight = np.linspace(0, 1, steps) left = np.expand_dims(weight, 0) left = np.repeat(left, old_size[1] - 2 * steps, 0) left = np.expand_dims(left, 2) left = np.repeat(left, 3, 2) weight = np.linspace(1, 0, steps) right = np.expand_dims(weight, 0) right = np.repeat(right, old_size[1] - 2 * steps, 0) right = np.expand_dims(right, 2) right = np.repeat(right, 3, 2) kernel[:steps, steps:-steps] = top kernel[-steps:, steps:-steps] = down kernel[steps:-steps, :steps] = left kernel[steps:-steps, -steps:] = right pt_gt_img = easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] gaussian_gt_img = kernel * gt_img_array + (1 - kernel) * pt_gt_img # gt img with blur img gaussian_gt_img = gaussian_gt_img.astype(np.int64) easy_img[pos_h:pos_h + old_size[1], pos_w:pos_w + old_size[0]] = gaussian_gt_img gaussian_img = Image.fromarray(easy_img) return gaussian_img def get_new_image_name(org_img_name, func_name="update"): head_tail = os.path.split(org_img_name) head = head_tail[0] tail = head_tail[1] name_split = tail.split('.')[0].split('_') this_new_uuid = str(uuid.uuid4())[0:4] if len(name_split) == 1: most_org_file_name = name_split[0] recent_prev_file_name = name_split[0] new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) else: assert len(name_split) == 4 most_org_file_name = name_split[3] recent_prev_file_name = name_split[0] new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name) return os.path.join(head, new_file_name) class InstructPix2Pix: def __init__(self, device): print(f"Initializing InstructPix2Pix to {device}") self.device = device self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", safety_checker=None, torch_dtype=self.torch_dtype).to(device) self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config) @prompts(name="Instruct Image Using Text", description="useful when you want to the style of the image to be like the text. " "like: make it look like a painting. or make it like a robot. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the text. ") def inference(self, inputs): """Change style of image.""" print("===>Starting InstructPix2Pix Inference") image_path, text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) original_image = Image.open(image_path) image = self.pipe(text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2).images[0] updated_image_path = get_new_image_name(image_path, func_name="pix2pix") image.save(updated_image_path) print(f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, " f"Output Image: {updated_image_path}") return updated_image_path class Text2Image: def __init__(self, device): print(f"Initializing Text2Image to {device}") self.device = device self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=self.torch_dtype) self.pipe.to(device) self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ 'fewer digits, cropped, worst quality, low quality' @prompts(name="Generate Image From User Input Text", description="useful when you want to generate an image from a user input text and save it to a file. " "like: generate an image of an object or something, or generate an image that includes some objects. " "The input to this tool should be a string, representing the text used to generate image. ") def inference(self, text): image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png") prompt = text + ', ' + self.a_prompt image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0] image.save(image_filename) print( f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}") return image_filename class ImageCaptioning: def __init__(self, device): print(f"Initializing ImageCaptioning to {device}") self.device = device self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base") self.model = BlipForConditionalGeneration.from_pretrained( "Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype).to(self.device) @prompts(name="Get Photo Description", description="useful when you want to know what is inside the photo. receives image_path as input. " "The input to this tool should be a string, representing the image_path. ") def inference(self, image_path): inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device, self.torch_dtype) out = self.model.generate(**inputs) captions = self.processor.decode(out[0], skip_special_tokens=True) print(f"\nProcessed ImageCaptioning, Input Image: {image_path}, Output Text: {captions}") return captions class Image2Canny: def __init__(self, device): print("Initializing Image2Canny") self.low_threshold = 100 self.high_threshold = 200 @prompts(name="Edge Detection On Image", description="useful when you want to detect the edge of the image. " "like: detect the edges of this image, or canny detection on image, " "or perform edge detection on this image, or detect the canny image of this image. " "The input to this tool should be a string, representing the image_path") def inference(self, inputs): image = Image.open(inputs) image = np.array(image) canny = cv2.Canny(image, self.low_threshold, self.high_threshold) canny = canny[:, :, None] canny = np.concatenate([canny, canny, canny], axis=2) canny = Image.fromarray(canny) updated_image_path = get_new_image_name(inputs, func_name="edge") canny.save(updated_image_path) print(f"\nProcessed Image2Canny, Input Image: {inputs}, Output Text: {updated_image_path}") return updated_image_path class CannyText2Image: def __init__(self, device): print(f"Initializing CannyText2Image to {device}") self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-canny", torch_dtype=self.torch_dtype) self.pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=self.torch_dtype) self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe.to(device) self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ 'fewer digits, cropped, worst quality, low quality' @prompts(name="Generate Image Condition On Canny Image", description="useful when you want to generate a new real image from both the user description and a canny image." " like: generate a real image of a object or something from this canny image," " or generate a new real image of a object or something from this edge image. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the user description. ") def inference(self, inputs): image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) self.seed = random.randint(0, 65535) seed_everything(self.seed) prompt = f'{instruct_text}, {self.a_prompt}' image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0] updated_image_path = get_new_image_name(image_path, func_name="canny2image") image.save(updated_image_path) print(f"\nProcessed CannyText2Image, Input Canny: {image_path}, Input Text: {instruct_text}, " f"Output Text: {updated_image_path}") return updated_image_path class Image2Line: def __init__(self, device): print("Initializing Image2Line") self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet') @prompts(name="Line Detection On Image", description="useful when you want to detect the straight line of the image. " "like: detect the straight lines of this image, or straight line detection on image, " "or perform straight line detection on this image, or detect the straight line image of this image. " "The input to this tool should be a string, representing the image_path") def inference(self, inputs): image = Image.open(inputs) mlsd = self.detector(image) updated_image_path = get_new_image_name(inputs, func_name="line-of") mlsd.save(updated_image_path) print(f"\nProcessed Image2Line, Input Image: {inputs}, Output Line: {updated_image_path}") return updated_image_path class LineText2Image: def __init__(self, device): print(f"Initializing LineText2Image to {device}") self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-mlsd", torch_dtype=self.torch_dtype) self.pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=self.torch_dtype ) self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe.to(device) self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ 'fewer digits, cropped, worst quality, low quality' @prompts(name="Generate Image Condition On Line Image", description="useful when you want to generate a new real image from both the user description " "and a straight line image. " "like: generate a real image of a object or something from this straight line image, " "or generate a new real image of a object or something from this straight lines. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the user description. ") def inference(self, inputs): image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) self.seed = random.randint(0, 65535) seed_everything(self.seed) prompt = f'{instruct_text}, {self.a_prompt}' image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0] updated_image_path = get_new_image_name(image_path, func_name="line2image") image.save(updated_image_path) print(f"\nProcessed LineText2Image, Input Line: {image_path}, Input Text: {instruct_text}, " f"Output Text: {updated_image_path}") return updated_image_path class Image2Hed: def __init__(self, device): print("Initializing Image2Hed") self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') @prompts(name="Hed Detection On Image", description="useful when you want to detect the soft hed boundary of the image. " "like: detect the soft hed boundary of this image, or hed boundary detection on image, " "or perform hed boundary detection on this image, or detect soft hed boundary image of this image. " "The input to this tool should be a string, representing the image_path") def inference(self, inputs): image = Image.open(inputs) hed = self.detector(image) updated_image_path = get_new_image_name(inputs, func_name="hed-boundary") hed.save(updated_image_path) print(f"\nProcessed Image2Hed, Input Image: {inputs}, Output Hed: {updated_image_path}") return updated_image_path class HedText2Image: def __init__(self, device): print(f"Initializing HedText2Image to {device}") self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-hed", torch_dtype=self.torch_dtype) self.pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=self.torch_dtype ) self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe.to(device) self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ 'fewer digits, cropped, worst quality, low quality' @prompts(name="Generate Image Condition On Soft Hed Boundary Image", description="useful when you want to generate a new real image from both the user description " "and a soft hed boundary image. " "like: generate a real image of a object or something from this soft hed boundary image, " "or generate a new real image of a object or something from this hed boundary. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the user description") def inference(self, inputs): image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) self.seed = random.randint(0, 65535) seed_everything(self.seed) prompt = f'{instruct_text}, {self.a_prompt}' image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0] updated_image_path = get_new_image_name(image_path, func_name="hed2image") image.save(updated_image_path) print(f"\nProcessed HedText2Image, Input Hed: {image_path}, Input Text: {instruct_text}, " f"Output Image: {updated_image_path}") return updated_image_path class Image2Scribble: def __init__(self, device): print("Initializing Image2Scribble") self.detector = HEDdetector.from_pretrained('lllyasviel/ControlNet') @prompts(name="Sketch Detection On Image", description="useful when you want to generate a scribble of the image. " "like: generate a scribble of this image, or generate a sketch from this image, " "detect the sketch from this image. " "The input to this tool should be a string, representing the image_path") def inference(self, inputs): image = Image.open(inputs) scribble = self.detector(image, scribble=True) updated_image_path = get_new_image_name(inputs, func_name="scribble") scribble.save(updated_image_path) print(f"\nProcessed Image2Scribble, Input Image: {inputs}, Output Scribble: {updated_image_path}") return updated_image_path class ScribbleText2Image: def __init__(self, device): print(f"Initializing ScribbleText2Image to {device}") self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-scribble", torch_dtype=self.torch_dtype) self.pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=self.torch_dtype ) self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe.to(device) self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ 'fewer digits, cropped, worst quality, low quality' @prompts(name="Generate Image Condition On Sketch Image", description="useful when you want to generate a new real image from both the user description and " "a scribble image or a sketch image. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the user description") def inference(self, inputs): image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) self.seed = random.randint(0, 65535) seed_everything(self.seed) prompt = f'{instruct_text}, {self.a_prompt}' image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0] updated_image_path = get_new_image_name(image_path, func_name="scribble2image") image.save(updated_image_path) print(f"\nProcessed ScribbleText2Image, Input Scribble: {image_path}, Input Text: {instruct_text}, " f"Output Image: {updated_image_path}") return updated_image_path class Image2Pose: def __init__(self, device): print("Initializing Image2Pose") self.detector = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') @prompts(name="Pose Detection On Image", description="useful when you want to detect the human pose of the image. " "like: generate human poses of this image, or generate a pose image from this image. " "The input to this tool should be a string, representing the image_path") def inference(self, inputs): image = Image.open(inputs) pose = self.detector(image) updated_image_path = get_new_image_name(inputs, func_name="human-pose") pose.save(updated_image_path) print(f"\nProcessed Image2Pose, Input Image: {inputs}, Output Pose: {updated_image_path}") return updated_image_path class PoseText2Image: def __init__(self, device): print(f"Initializing PoseText2Image to {device}") self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-openpose", torch_dtype=self.torch_dtype) self.pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=self.torch_dtype) self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe.to(device) self.num_inference_steps = 20 self.seed = -1 self.unconditional_guidance_scale = 9.0 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ ' fewer digits, cropped, worst quality, low quality' @prompts(name="Generate Image Condition On Pose Image", description="useful when you want to generate a new real image from both the user description " "and a human pose image. " "like: generate a real image of a human from this human pose image, " "or generate a new real image of a human from this pose. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the user description") def inference(self, inputs): image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) self.seed = random.randint(0, 65535) seed_everything(self.seed) prompt = f'{instruct_text}, {self.a_prompt}' image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0] updated_image_path = get_new_image_name(image_path, func_name="pose2image") image.save(updated_image_path) print(f"\nProcessed PoseText2Image, Input Pose: {image_path}, Input Text: {instruct_text}, " f"Output Image: {updated_image_path}") return updated_image_path class SegText2Image: def __init__(self, device): print(f"Initializing SegText2Image to {device}") self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.controlnet = ControlNetModel.from_pretrained("fusing/stable-diffusion-v1-5-controlnet-seg", torch_dtype=self.torch_dtype) self.pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=self.torch_dtype) self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe.to(device) self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ ' fewer digits, cropped, worst quality, low quality' @prompts(name="Generate Image Condition On Segmentations", description="useful when you want to generate a new real image from both the user description and segmentations. " "like: generate a real image of a object or something from this segmentation image, " "or generate a new real image of a object or something from these segmentations. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the user description") def inference(self, inputs): image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) self.seed = random.randint(0, 65535) seed_everything(self.seed) prompt = f'{instruct_text}, {self.a_prompt}' image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0] updated_image_path = get_new_image_name(image_path, func_name="segment2image") image.save(updated_image_path) print(f"\nProcessed SegText2Image, Input Seg: {image_path}, Input Text: {instruct_text}, " f"Output Image: {updated_image_path}") return updated_image_path class Image2Depth: def __init__(self, device): print("Initializing Image2Depth") self.depth_estimator = pipeline('depth-estimation') @prompts(name="Predict Depth On Image", description="useful when you want to detect depth of the image. like: generate the depth from this image, " "or detect the depth map on this image, or predict the depth for this image. " "The input to this tool should be a string, representing the image_path") def inference(self, inputs): image = Image.open(inputs) depth = self.depth_estimator(image)['depth'] depth = np.array(depth) depth = depth[:, :, None] depth = np.concatenate([depth, depth, depth], axis=2) depth = Image.fromarray(depth) updated_image_path = get_new_image_name(inputs, func_name="depth") depth.save(updated_image_path) print(f"\nProcessed Image2Depth, Input Image: {inputs}, Output Depth: {updated_image_path}") return updated_image_path class DepthText2Image: def __init__(self, device): print(f"Initializing DepthText2Image to {device}") self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.controlnet = ControlNetModel.from_pretrained( "fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=self.torch_dtype) self.pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=self.torch_dtype) self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe.to(device) self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ ' fewer digits, cropped, worst quality, low quality' @prompts(name="Generate Image Condition On Depth", description="useful when you want to generate a new real image from both the user description and depth image. " "like: generate a real image of a object or something from this depth image, " "or generate a new real image of a object or something from the depth map. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the user description") def inference(self, inputs): image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) self.seed = random.randint(0, 65535) seed_everything(self.seed) prompt = f'{instruct_text}, {self.a_prompt}' image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0] updated_image_path = get_new_image_name(image_path, func_name="depth2image") image.save(updated_image_path) print(f"\nProcessed DepthText2Image, Input Depth: {image_path}, Input Text: {instruct_text}, " f"Output Image: {updated_image_path}") return updated_image_path class Image2Normal: def __init__(self, device): print("Initializing Image2Normal") self.depth_estimator = pipeline("depth-estimation", model="Intel/dpt-hybrid-midas") self.bg_threhold = 0.4 @prompts(name="Predict Normal Map On Image", description="useful when you want to detect norm map of the image. " "like: generate normal map from this image, or predict normal map of this image. " "The input to this tool should be a string, representing the image_path") def inference(self, inputs): image = Image.open(inputs) original_size = image.size image = self.depth_estimator(image)['predicted_depth'][0] image = image.numpy() image_depth = image.copy() image_depth -= np.min(image_depth) image_depth /= np.max(image_depth) x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3) x[image_depth < self.bg_threhold] = 0 y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3) y[image_depth < self.bg_threhold] = 0 z = np.ones_like(x) * np.pi * 2.0 image = np.stack([x, y, z], axis=2) image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5 image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8) image = Image.fromarray(image) image = image.resize(original_size) updated_image_path = get_new_image_name(inputs, func_name="normal-map") image.save(updated_image_path) print(f"\nProcessed Image2Normal, Input Image: {inputs}, Output Depth: {updated_image_path}") return updated_image_path class NormalText2Image: def __init__(self, device): print(f"Initializing NormalText2Image to {device}") self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.controlnet = ControlNetModel.from_pretrained( "fusing/stable-diffusion-v1-5-controlnet-normal", torch_dtype=self.torch_dtype) self.pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None, torch_dtype=self.torch_dtype) self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe.to(device) self.seed = -1 self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit,' \ ' fewer digits, cropped, worst quality, low quality' @prompts(name="Generate Image Condition On Normal Map", description="useful when you want to generate a new real image from both the user description and normal map. " "like: generate a real image of a object or something from this normal map, " "or generate a new real image of a object or something from the normal map. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the user description") def inference(self, inputs): image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) image = Image.open(image_path) self.seed = random.randint(0, 65535) seed_everything(self.seed) prompt = f'{instruct_text}, {self.a_prompt}' image = self.pipe(prompt, image, num_inference_steps=20, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=9.0).images[0] updated_image_path = get_new_image_name(image_path, func_name="normal2image") image.save(updated_image_path) print(f"\nProcessed NormalText2Image, Input Normal: {image_path}, Input Text: {instruct_text}, " f"Output Image: {updated_image_path}") return updated_image_path class VisualQuestionAnswering: def __init__(self, device): print(f"Initializing VisualQuestionAnswering to {device}") self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.device = device self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base") self.model = BlipForQuestionAnswering.from_pretrained( "Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype).to(self.device) @prompts(name="Answer Question About The Image", description="useful when you need an answer for a question based on an image. " "like: what is the background color of the last image, how many cats in this figure, what is in this figure. " "The input to this tool should be a comma separated string of two, representing the image_path and the question") def inference(self, inputs): image_path, question = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) raw_image = Image.open(image_path).convert('RGB') inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device, self.torch_dtype) out = self.model.generate(**inputs) answer = self.processor.decode(out[0], skip_special_tokens=True) print(f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, " f"Output Answer: {answer}") return answer class Segmenting: def __init__(self, device): print(f"Inintializing Segmentation to {device}") self.device = device self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.model_checkpoint_path = os.path.join("checkpoints", "sam") self.download_parameters() self.sam = build_sam(checkpoint=self.model_checkpoint_path).to(device) self.sam_predictor = SamPredictor(self.sam) self.mask_generator = SamAutomaticMaskGenerator(self.sam) def download_parameters(self): url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" if not os.path.exists(self.model_checkpoint_path): wget.download(url, out=self.model_checkpoint_path) def show_mask(self, mask, ax, random_color=False): if random_color: color = np.concatenate([np.random.random(3), np.array([1])], axis=0) else: color = np.array([30 / 255, 144 / 255, 255 / 255, 1]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) ax.imshow(mask_image) def show_box(self, box, ax, label): x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) ax.text(x0, y0, label) def get_mask_with_boxes(self, image_pil, image, boxes_filt): size = image_pil.size H, W = size[1], size[0] for i in range(boxes_filt.size(0)): boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H]) boxes_filt[i][:2] -= boxes_filt[i][2:] / 2 boxes_filt[i][2:] += boxes_filt[i][:2] boxes_filt = boxes_filt.cpu() transformed_boxes = self.sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(self.device) masks, _, _ = self.sam_predictor.predict_torch( point_coords=None, point_labels=None, boxes=transformed_boxes.to(self.device), multimask_output=False, ) return masks def segment_image_with_boxes(self, image_pil, image_path, boxes_filt, pred_phrases): image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) self.sam_predictor.set_image(image) masks = self.get_mask_with_boxes(image_pil, image, boxes_filt) # draw output image plt.figure(figsize=(10, 10)) plt.imshow(image) for mask in masks: self.show_mask(mask.cpu().numpy(), plt.gca(), random_color=True) updated_image_path = get_new_image_name(image_path, func_name="segmentation") plt.axis('off') plt.savefig( updated_image_path, bbox_inches="tight", dpi=300, pad_inches=0.0 ) return updated_image_path @prompts(name="Segment the Image", description="useful when you want to segment all the part of the image, but not segment a certain object." "like: segment all the object in this image, or generate segmentations on this image, " "or segment the image," "or perform segmentation on this image, " "or segment all the object in this image." "The input to this tool should be a string, representing the image_path") def inference_all(self, image_path): image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) masks = self.mask_generator.generate(image) plt.figure(figsize=(20, 20)) plt.imshow(image) if len(masks) == 0: return sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True) ax = plt.gca() ax.set_autoscale_on(False) polygons = [] color = [] for ann in sorted_anns: m = ann['segmentation'] img = np.ones((m.shape[0], m.shape[1], 3)) color_mask = np.random.random((1, 3)).tolist()[0] for i in range(3): img[:, :, i] = color_mask[i] ax.imshow(np.dstack((img, m))) updated_image_path = get_new_image_name(image_path, func_name="segment-image") plt.axis('off') plt.savefig( updated_image_path, bbox_inches="tight", dpi=300, pad_inches=0.0 ) return updated_image_path class Text2Box: def __init__(self, device): print(f"Initializing ObjectDetection to {device}") self.device = device self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.model_checkpoint_path = os.path.join("checkpoints", "groundingdino") self.model_config_path = os.path.join("checkpoints", "grounding_config.py") self.download_parameters() self.box_threshold = 0.3 self.text_threshold = 0.25 self.grounding = (self.load_model()).to(self.device) def download_parameters(self): url = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth" if not os.path.exists(self.model_checkpoint_path): wget.download(url, out=self.model_checkpoint_path) config_url = "https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/main/groundingdino/config/GroundingDINO_SwinT_OGC.py" if not os.path.exists(self.model_config_path): wget.download(config_url, out=self.model_config_path) def load_image(self, image_path): # load image image_pil = Image.open(image_path).convert("RGB") # load image transform = T.Compose( [ T.RandomResize([512], max_size=1333), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) image, _ = transform(image_pil, None) # 3, h, w return image_pil, image def load_model(self): args = SLConfig.fromfile(self.model_config_path) args.device = self.device model = build_model(args) checkpoint = torch.load(self.model_checkpoint_path, map_location="cpu") load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) print(load_res) _ = model.eval() return model def get_grounding_boxes(self, image, caption, with_logits=True): caption = caption.lower() caption = caption.strip() if not caption.endswith("."): caption = caption + "." image = image.to(self.device) with torch.no_grad(): outputs = self.grounding(image[None], captions=[caption]) logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256) boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4) logits.shape[0] # filter output logits_filt = logits.clone() boxes_filt = boxes.clone() filt_mask = logits_filt.max(dim=1)[0] > self.box_threshold logits_filt = logits_filt[filt_mask] # num_filt, 256 boxes_filt = boxes_filt[filt_mask] # num_filt, 4 logits_filt.shape[0] # get phrase tokenlizer = self.grounding.tokenizer tokenized = tokenlizer(caption) # build pred pred_phrases = [] for logit, box in zip(logits_filt, boxes_filt): pred_phrase = get_phrases_from_posmap(logit > self.text_threshold, tokenized, tokenlizer) if with_logits: pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") else: pred_phrases.append(pred_phrase) return boxes_filt, pred_phrases def plot_boxes_to_image(self, image_pil, tgt): H, W = tgt["size"] boxes = tgt["boxes"] labels = tgt["labels"] assert len(boxes) == len(labels), "boxes and labels must have same length" draw = ImageDraw.Draw(image_pil) mask = Image.new("L", image_pil.size, 0) mask_draw = ImageDraw.Draw(mask) # draw boxes and masks for box, label in zip(boxes, labels): # from 0..1 to 0..W, 0..H box = box * torch.Tensor([W, H, W, H]) # from xywh to xyxy box[:2] -= box[2:] / 2 box[2:] += box[:2] # random color color = tuple(np.random.randint(0, 255, size=3).tolist()) # draw x0, y0, x1, y1 = box x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) draw.rectangle([x0, y0, x1, y1], outline=color, width=6) # draw.text((x0, y0), str(label), fill=color) font = ImageFont.load_default() if hasattr(font, "getbbox"): bbox = draw.textbbox((x0, y0), str(label), font) else: w, h = draw.textsize(str(label), font) bbox = (x0, y0, w + x0, y0 + h) # bbox = draw.textbbox((x0, y0), str(label)) draw.rectangle(bbox, fill=color) draw.text((x0, y0), str(label), fill="white") mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=2) return image_pil, mask @prompts(name="Detect the Give Object", description="useful when you only want to detect or find out given objects in the picture" "The input to this tool should be a comma separated string of two, " "representing the image_path, the text description of the object to be found") def inference(self, inputs): image_path, det_prompt = inputs.split(",") print(f"image_path={image_path}, text_prompt={det_prompt}") image_pil, image = self.load_image(image_path) boxes_filt, pred_phrases = self.get_grounding_boxes(image, det_prompt) size = image_pil.size pred_dict = { "boxes": boxes_filt, "size": [size[1], size[0]], # H,W "labels": pred_phrases, } image_with_box = self.plot_boxes_to_image(image_pil, pred_dict)[0] updated_image_path = get_new_image_name(image_path, func_name="detect-something") updated_image = image_with_box.resize(size) updated_image.save(updated_image_path) print( f"\nProcessed ObejectDetecting, Input Image: {image_path}, Object to be Detect {det_prompt}, " f"Output Image: {updated_image_path}") return updated_image_path class Inpainting: def __init__(self, device): self.device = device self.revision = 'fp16' if 'cuda' in self.device else None self.torch_dtype = torch.float16 if 'cuda' in self.device else torch.float32 self.inpaint = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting", revision=self.revision, torch_dtype=self.torch_dtype).to(device) def __call__(self, prompt, original_image, mask_image): update_image = self.inpaint(prompt=prompt, image=original_image.resize((512, 512)), mask_image=mask_image.resize((512, 512))).images[0] return update_image class InfinityOutPainting: template_model = True # Add this line to show this is a template model. def __init__(self, ImageCaptioning, ImageEditing, VisualQuestionAnswering): self.llm = OpenAI(temperature=0) self.ImageCaption = ImageCaptioning self.ImageEditing = ImageEditing self.ImageVQA = VisualQuestionAnswering self.a_prompt = 'best quality, extremely detailed' self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, ' \ 'fewer digits, cropped, worst quality, low quality' def get_BLIP_vqa(self, image, question): inputs = self.ImageVQA.processor(image, question, return_tensors="pt").to(self.ImageVQA.device, self.ImageVQA.torch_dtype) out = self.ImageVQA.model.generate(**inputs) answer = self.ImageVQA.processor.decode(out[0], skip_special_tokens=True) print(f"\nProcessed VisualQuestionAnswering, Input Question: {question}, Output Answer: {answer}") return answer def get_BLIP_caption(self, image): inputs = self.ImageCaption.processor(image, return_tensors="pt").to(self.ImageCaption.device, self.ImageCaption.torch_dtype) out = self.ImageCaption.model.generate(**inputs) BLIP_caption = self.ImageCaption.processor.decode(out[0], skip_special_tokens=True) return BLIP_caption def check_prompt(self, prompt): check = f"Here is a paragraph with adjectives. " \ f"{prompt} " \ f"Please change all plural forms in the adjectives to singular forms. " return self.llm(check) def get_imagine_caption(self, image, imagine): BLIP_caption = self.get_BLIP_caption(image) background_color = self.get_BLIP_vqa(image, 'what is the background color of this image') style = self.get_BLIP_vqa(image, 'what is the style of this image') imagine_prompt = f"let's pretend you are an excellent painter and now " \ f"there is an incomplete painting with {BLIP_caption} in the center, " \ f"please imagine the complete painting and describe it" \ f"you should consider the background color is {background_color}, the style is {style}" \ f"You should make the painting as vivid and realistic as possible" \ f"You can not use words like painting or picture" \ f"and you should use no more than 50 words to describe it" caption = self.llm(imagine_prompt) if imagine else BLIP_caption caption = self.check_prompt(caption) print(f'BLIP observation: {BLIP_caption}, ChatGPT imagine to {caption}') if imagine else print( f'Prompt: {caption}') return caption def resize_image(self, image, max_size=1000000, multiple=8): aspect_ratio = image.size[0] / image.size[1] new_width = int(math.sqrt(max_size * aspect_ratio)) new_height = int(new_width / aspect_ratio) new_width, new_height = new_width - (new_width % multiple), new_height - (new_height % multiple) return image.resize((new_width, new_height)) def dowhile(self, original_img, tosize, expand_ratio, imagine, usr_prompt): old_img = original_img while (old_img.size != tosize): prompt = self.check_prompt(usr_prompt) if usr_prompt else self.get_imagine_caption(old_img, imagine) crop_w = 15 if old_img.size[0] != tosize[0] else 0 crop_h = 15 if old_img.size[1] != tosize[1] else 0 old_img = ImageOps.crop(old_img, (crop_w, crop_h, crop_w, crop_h)) temp_canvas_size = (expand_ratio * old_img.width if expand_ratio * old_img.width < tosize[0] else tosize[0], expand_ratio * old_img.height if expand_ratio * old_img.height < tosize[1] else tosize[ 1]) temp_canvas, temp_mask = Image.new("RGB", temp_canvas_size, color="white"), Image.new("L", temp_canvas_size, color="white") x, y = (temp_canvas.width - old_img.width) // 2, (temp_canvas.height - old_img.height) // 2 temp_canvas.paste(old_img, (x, y)) temp_mask.paste(0, (x, y, x + old_img.width, y + old_img.height)) resized_temp_canvas, resized_temp_mask = self.resize_image(temp_canvas), self.resize_image(temp_mask) image = self.ImageEditing.inpaint(prompt=prompt, image=resized_temp_canvas, mask_image=resized_temp_mask, height=resized_temp_canvas.height, width=resized_temp_canvas.width, num_inference_steps=50).images[0].resize( (temp_canvas.width, temp_canvas.height), Image.ANTIALIAS) image = blend_gt2pt(old_img, image) old_img = image return old_img @prompts(name="Extend An Image", description="useful when you need to extend an image into a larger image." "like: extend the image into a resolution of 2048x1024, extend the image into 2048x1024. " "The input to this tool should be a comma separated string of two, representing the image_path and the resolution of widthxheight") def inference(self, inputs): image_path, resolution = inputs.split(',') width, height = resolution.split('x') tosize = (int(width), int(height)) image = Image.open(image_path) image = ImageOps.crop(image, (10, 10, 10, 10)) out_painted_image = self.dowhile(image, tosize, 4, True, False) updated_image_path = get_new_image_name(image_path, func_name="outpainting") out_painted_image.save(updated_image_path) print(f"\nProcessed InfinityOutPainting, Input Image: {image_path}, Input Resolution: {resolution}, " f"Output Image: {updated_image_path}") return updated_image_path class ObjectSegmenting: template_model = True # Add this line to show this is a template model. def __init__(self, Text2Box: Text2Box, Segmenting: Segmenting): # self.llm = OpenAI(temperature=0) self.grounding = Text2Box self.sam = Segmenting @prompts(name="Segment the given object", description="useful when you only want to segment the certain objects in the picture" "according to the given text" "like: segment the cat," "or can you segment an obeject for me" "The input to this tool should be a comma separated string of two, " "representing the image_path, the text description of the object to be found") def inference(self, inputs): image_path, det_prompt = inputs.split(",") print(f"image_path={image_path}, text_prompt={det_prompt}") image_pil, image = self.grounding.load_image(image_path) boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, det_prompt) updated_image_path = self.sam.segment_image_with_boxes(image_pil, image_path, boxes_filt, pred_phrases) print( f"\nProcessed ObejectSegmenting, Input Image: {image_path}, Object to be Segment {det_prompt}, " f"Output Image: {updated_image_path}") return updated_image_path class ImageEditing: template_model = True def __init__(self, Text2Box: Text2Box, Segmenting: Segmenting, Inpainting: Inpainting): print(f"Initializing ImageEditing") self.sam = Segmenting self.grounding = Text2Box self.inpaint = Inpainting def pad_edge(self, mask, padding): # mask Tensor [H,W] mask = mask.numpy() true_indices = np.argwhere(mask) mask_array = np.zeros_like(mask, dtype=bool) for idx in true_indices: padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx) mask_array[padded_slice] = True new_mask = (mask_array * 255).astype(np.uint8) # new_mask return new_mask @prompts(name="Remove Something From The Photo", description="useful when you want to remove and object or something from the photo " "from its description or location. " "The input to this tool should be a comma separated string of two, " "representing the image_path and the object need to be removed. ") def inference_remove(self, inputs): image_path, to_be_removed_txt = inputs.split(",")[0], ','.join(inputs.split(',')[1:]) return self.inference_replace_sam(f"{image_path},{to_be_removed_txt},background") @prompts(name="Replace Something From The Photo", description="useful when you want to replace an object from the object description or " "location with another object from its description. " "The input to this tool should be a comma separated string of three, " "representing the image_path, the object to be replaced, the object to be replaced with ") def inference_replace_sam(self, inputs): image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",") print(f"image_path={image_path}, to_be_replaced_txt={to_be_replaced_txt}") image_pil, image = self.grounding.load_image(image_path) boxes_filt, pred_phrases = self.grounding.get_grounding_boxes(image, to_be_replaced_txt) image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) self.sam.sam_predictor.set_image(image) masks = self.sam.get_mask_with_boxes(image_pil, image, boxes_filt) mask = torch.sum(masks, dim=0).unsqueeze(0) mask = torch.where(mask > 0, True, False) mask = mask.squeeze(0).squeeze(0).cpu() # tensor mask = self.pad_edge(mask, padding=20) # numpy mask_image = Image.fromarray(mask) updated_image = self.inpaint(prompt=replace_with_txt, original_image=image_pil, mask_image=mask_image) updated_image_path = get_new_image_name(image_path, func_name="replace-something") updated_image = updated_image.resize(image_pil.size) updated_image.save(updated_image_path) print( f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, " f"Output Image: {updated_image_path}") return updated_image_path