midoux05 commited on
Commit
2786fbb
·
verified ·
1 Parent(s): 9ba2a1c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +156 -110
app.py CHANGED
@@ -1,3 +1,10 @@
 
 
 
 
 
 
 
1
  import torch
2
 
3
  import gradio as gr
@@ -8,144 +15,183 @@ from transformers.pipelines.audio_utils import ffmpeg_read
8
  import tempfile
9
  import os
10
 
11
- MODEL_NAME = "openai/whisper-large-v3"
12
- BATCH_SIZE = 8
13
- FILE_LIMIT_MB = 1000
14
- YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
15
 
16
- device = 0 if torch.cuda.is_available() else "cpu"
17
 
18
- pipe = pipeline(
19
- task="automatic-speech-recognition",
20
- model=MODEL_NAME,
21
- chunk_length_s=30,
22
- device=device,
23
- )
24
 
 
25
 
26
- def transcribe(inputs, task):
27
- if inputs is None:
28
- raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
29
 
30
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
31
- return text
32
 
33
 
34
- def _return_yt_html_embed(yt_url):
35
- video_id = yt_url.split("?v=")[-1]
36
- HTML_str = (
37
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
38
- " </center>"
39
- )
40
- return HTML_str
41
 
42
- def download_yt_audio(yt_url, filename):
43
- info_loader = youtube_dl.YoutubeDL()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
- try:
46
- info = info_loader.extract_info(yt_url, download=False)
47
- except youtube_dl.utils.DownloadError as err:
48
- raise gr.Error(str(err))
49
 
50
- file_length = info["duration_string"]
51
- file_h_m_s = file_length.split(":")
52
- file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
53
 
54
- if len(file_h_m_s) == 1:
55
- file_h_m_s.insert(0, 0)
56
- if len(file_h_m_s) == 2:
57
- file_h_m_s.insert(0, 0)
58
- file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
59
 
60
- if file_length_s > YT_LENGTH_LIMIT_S:
61
- yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
62
- file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
63
- raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
64
 
65
- ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
66
 
67
- with youtube_dl.YoutubeDL(ydl_opts) as ydl:
68
- try:
69
- ydl.download([yt_url])
70
- except youtube_dl.utils.ExtractorError as err:
71
- raise gr.Error(str(err))
72
 
73
 
74
- def yt_transcribe(yt_url, task, max_filesize=75.0):
75
- html_embed_str = _return_yt_html_embed(yt_url)
76
 
77
- with tempfile.TemporaryDirectory() as tmpdirname:
78
- filepath = os.path.join(tmpdirname, "video.mp4")
79
- download_yt_audio(yt_url, filepath)
80
- with open(filepath, "rb") as f:
81
- inputs = f.read()
82
 
83
- inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
84
- inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
85
 
86
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
87
 
88
- return html_embed_str, text
89
 
90
 
91
  demo = gr.Blocks()
92
 
93
- mf_transcribe = gr.Interface(
94
- fn=transcribe,
95
- inputs=[
96
- gr.inputs.Audio(source="microphone", type="filepath", optional=True),
97
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
98
- ],
99
- outputs="text",
100
- layout="horizontal",
101
- theme="huggingface",
102
- title="Whisper Large V3: Transcribe Audio",
103
- description=(
104
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
105
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
106
- " of arbitrary length."
107
- ),
108
- allow_flagging="never",
109
- )
110
 
111
- file_transcribe = gr.Interface(
112
- fn=transcribe,
113
- inputs=[
114
- gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
115
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
116
- ],
117
- outputs="text",
118
- layout="horizontal",
119
- theme="huggingface",
120
- title="Whisper Large V3: Transcribe Audio",
121
- description=(
122
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
123
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
124
- " of arbitrary length."
125
- ),
126
- allow_flagging="never",
127
- )
128
 
129
- yt_transcribe = gr.Interface(
130
- fn=yt_transcribe,
131
- inputs=[
132
- gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
133
- gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
134
- ],
135
- outputs=["html", "text"],
136
- layout="horizontal",
137
- theme="huggingface",
138
- title="Whisper Large V3: Transcribe YouTube",
139
- description=(
140
- "Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
141
- f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
142
- " arbitrary length."
143
- ),
144
- allow_flagging="never",
145
  )
146
 
 
147
  with demo:
148
- gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
 
 
 
 
 
149
 
150
- demo.launch(enable_queue=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151
 
 
1
+
2
+
3
+
4
+
5
+
6
+
7
+
8
  import torch
9
 
10
  import gradio as gr
 
15
  import tempfile
16
  import os
17
 
 
 
 
 
18
 
 
19
 
 
 
 
 
 
 
20
 
21
+ model = separator.from_hparams(source="speechbrain/sepformer-libri2mix", savedir='pretrained_models/sepformer-libri2mix')
22
 
 
 
 
23
 
 
 
24
 
25
 
 
 
 
 
 
 
 
26
 
27
+
28
+
29
+
30
+
31
+
32
+
33
+
34
+ # MODEL_NAME = "openai/whisper-large-v3"
35
+ # BATCH_SIZE = 8
36
+ # FILE_LIMIT_MB = 1000
37
+ # YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
38
+
39
+ # device = 0 if torch.cuda.is_available() else "cpu"
40
+
41
+ # pipe = pipeline(
42
+ # task="automatic-speech-recognition",
43
+ # model=MODEL_NAME,
44
+ # chunk_length_s=30,
45
+ # device=device,
46
+ # )
47
+
48
+
49
+
50
+
51
+ # # def transcribe(inputs, task):
52
+ # # if inputs is None:
53
+ # # raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
54
+
55
+ # # text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
56
+ # # return text
57
+
58
+
59
+ # # def _return_yt_html_embed(yt_url):
60
+ # # video_id = yt_url.split("?v=")[-1]
61
+ # # HTML_str = (
62
+ # # f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
63
+ # # " </center>"
64
+ # # )
65
+ # # return HTML_str
66
+
67
+ # # def download_yt_audio(yt_url, filename):
68
+ # # info_loader = youtube_dl.YoutubeDL()
69
 
70
+ # # try:
71
+ # # info = info_loader.extract_info(yt_url, download=False)
72
+ # # except youtube_dl.utils.DownloadError as err:
73
+ # # raise gr.Error(str(err))
74
 
75
+ # # file_length = info["duration_string"]
76
+ # # file_h_m_s = file_length.split(":")
77
+ # # file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
78
 
79
+ # # if len(file_h_m_s) == 1:
80
+ # # file_h_m_s.insert(0, 0)
81
+ # # if len(file_h_m_s) == 2:
82
+ # # file_h_m_s.insert(0, 0)
83
+ # # file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
84
 
85
+ # # if file_length_s > YT_LENGTH_LIMIT_S:
86
+ # # yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
87
+ # # file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
88
+ # # raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
89
 
90
+ # # ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
91
 
92
+ # # with youtube_dl.YoutubeDL(ydl_opts) as ydl:
93
+ # # try:
94
+ # # ydl.download([yt_url])
95
+ # # except youtube_dl.utils.ExtractorError as err:
96
+ # # raise gr.Error(str(err))
97
 
98
 
99
+ # # def yt_transcribe(yt_url, task, max_filesize=75.0):
100
+ # # html_embed_str = _return_yt_html_embed(yt_url)
101
 
102
+ # # with tempfile.TemporaryDirectory() as tmpdirname:
103
+ # # filepath = os.path.join(tmpdirname, "video.mp4")
104
+ # # download_yt_audio(yt_url, filepath)
105
+ # # with open(filepath, "rb") as f:
106
+ # # inputs = f.read()
107
 
108
+ # # inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
109
+ # # inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
110
 
111
+ # # text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
112
 
113
+ # # return html_embed_str, text
114
 
115
 
116
  demo = gr.Blocks()
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
 
119
+ def separateaudio(filepath):
120
+ est_sources = model.separate_file(path=filepath)
121
+ torchaudio.save("file.wav", est_sources[:, :, 0].detach().cpu(), 8000)
122
+
 
 
 
 
 
 
 
 
 
 
 
 
 
123
 
124
+ separation = gr.Interface(
125
+ fn=transcribe_speech,
126
+ inputs=gr.Audio(sources="upload", type="filepath"),
127
+ outputs=gr.outputs.Textbox(),
 
 
 
 
 
 
 
 
 
 
 
 
128
  )
129
 
130
+
131
  with demo:
132
+ gr.TabbedInterface(
133
+ [separation],
134
+ ["Separate audio file"],
135
+ )
136
+
137
+
138
 
139
+ # mf_transcribe = gr.Interface(
140
+ # fn=transcribe,
141
+ # inputs=[
142
+ # gr.inputs.Audio(source="microphone", type="filepath", optional=True),
143
+ # gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
144
+ # ],
145
+ # outputs="text",
146
+ # layout="horizontal",
147
+ # theme="huggingface",
148
+ # title="Whisper Large V3: Transcribe Audio",
149
+ # description=(
150
+ # "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
151
+ # f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
152
+ # " of arbitrary length."
153
+ # ),
154
+ # allow_flagging="never",
155
+ # )
156
+
157
+ # file_transcribe = gr.Interface(
158
+ # fn=transcribe,
159
+ # inputs=[
160
+ # gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"),
161
+ # gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
162
+ # ],
163
+ # outputs="text",
164
+ # layout="horizontal",
165
+ # theme="huggingface",
166
+ # title="Whisper Large V3: Transcribe Audio",
167
+ # description=(
168
+ # "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the OpenAI Whisper"
169
+ # f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
170
+ # " of arbitrary length."
171
+ # ),
172
+ # allow_flagging="never",
173
+ # )
174
+
175
+ # yt_transcribe = gr.Interface(
176
+ # fn=yt_transcribe,
177
+ # inputs=[
178
+ # gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
179
+ # gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe")
180
+ # ],
181
+ # outputs=["html", "text"],
182
+ # layout="horizontal",
183
+ # theme="huggingface",
184
+ # title="Whisper Large V3: Transcribe YouTube",
185
+ # description=(
186
+ # "Transcribe long-form YouTube videos with the click of a button! Demo uses the OpenAI Whisper checkpoint"
187
+ # f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
188
+ # " arbitrary length."
189
+ # ),
190
+ # allow_flagging="never",
191
+ # )
192
+
193
+ # with demo:
194
+ # gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
195
+
196
+ # demo.launch(enable_queue=True)
197