import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer
model_name = "migueldeguzmandev/GPT2XL_RLLMv19-4"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Set the pad token ID to the EOS token ID
model.config.pad_token_id = model.config.eos_token_id
# Define the inference function
def generate_response(input_text, temperature):
# Tokenize the input text
inputs = tokenizer(input_text, return_tensors="pt")
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
# Generate the model's response
output = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=300,
num_return_sequences=1,
temperature=temperature,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
do_sample=True, # Set do_sample to True when using temperature
)
# Decode the generated response
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
# Create the Gradio interface
interface = gr.Interface(
fn=generate_response,
inputs=[
gr.Textbox(label="User Input"),
gr.Slider(minimum=0.000000000000000000000000001, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
],
outputs=gr.Textbox(label="Model Response"),
title="TestOnlyRLLMv19Layer4",
description=(
"""
RLLMv19 is a spin-off experiment focusing on improving GPT2XL's robustness to jailbreaks. The 4th layer of RLLMv19 is compared to the 4th layer of RLLMv3. Why RLLMv3? This prototype demonstrated a capability to resist jailbreak attacks up to 67.8%, which you can read more about (here).
"""
),
)
# Launch the interface without the share option
interface.launch()