import gradio as gr import torch from transformers import ( AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, ) import os from threading import Thread import spaces import time import subprocess PLACEHOLDER = """

mii-llm / Maestrale

Chiedi pure...

""" DESCRIPTION = """

🇮🇹 Italian LLM Maestrale Chat v0.4 alpha. Maestrale is a powerful language model for Italian, trained by mii-llm, based on Mistral 7B.

🔎 For more details about Maestrale and how to use it with transformers, visit the model card.

""" _token = os.environ["HUGGINGFACE_API_KEY"] tokenizer = AutoTokenizer.from_pretrained("mii-llm/maestrale-chat-v0.4-alpha-v2", token=_token) model = AutoModelForCausalLM.from_pretrained("mii-llm/maestrale-chat-v0.4-alpha-v2", torch_dtype=torch.bfloat16, device_map="auto", token=_token) terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|im_end|>") ] if torch.cuda.is_available(): device = torch.device("cuda") print(f"Using GPU: {torch.cuda.get_device_name(device)}") else: device = torch.device("cpu") print("Using CPU") model = model.to(device) @spaces.GPU() def chat(message, history, system, temperature, do_sample, max_tokens): chat = [{"role": "system", "content": system}] if system else [] chat.extend( {"role": role, "content": content} for user, assistant in history for role, content in [("user", user), ("assistant", assistant)] ) chat.append({"role": "user", "content": message}) messages = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([messages], return_tensors="pt").to(device) streamer = TextIteratorStreamer( tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = { **model_inputs, "streamer": streamer, "max_new_tokens": max_tokens, "do_sample": do_sample, "temperature": temperature, "eos_token_id": terminators, "pad_token_id": tokenizer.eos_token_id } thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() partial_text = "" for new_text in streamer: partial_text += new_text yield partial_text yield partial_text chatbot = gr.Chatbot(height=550, placeholder=PLACEHOLDER, label='Conversazione', show_copy_button=True) demo = gr.ChatInterface( fn=chat, chatbot=chatbot, fill_height=True, theme=gr.themes.Soft(), additional_inputs_accordion=gr.Accordion( label="⚙️ Parametri", open=False, render=False ), additional_inputs=[ gr.Textbox( label="System", value="Sei un assistente utile.", ), gr.Slider( minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", render=False ), gr.Checkbox(label="Sampling", value=True), gr.Slider( minimum=128, maximum=4096, step=1, value=768, label="Max new tokens", render=False, ), ], stop_btn="Stop Generation", cache_examples=False, title="Maestrale Chat v0.4 Alpha", description=DESCRIPTION ) demo.launch()