Spaces:
Sleeping
Sleeping
import gradio as gr | |
import joblib | |
import spacy | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer | |
from sklearn.preprocessing import MultiLabelBinarizer | |
from sklearn.base import BaseEstimator, TransformerMixin | |
nlp = spacy.load('en_core_web_sm') | |
tfidf = joblib.load('./tfidf.joblib') | |
model = joblib.load('./model.joblib') | |
tags_binarizer = joblib.load('./tags.joblib') | |
def lemmatize(s: str) -> iter: | |
# tokenize | |
doc = nlp(s) | |
# remove punct and stopwords | |
tokens = filter(lambda token: not token.is_space and not token.is_punct and not token.is_stop and not token.is_digit, doc) | |
# lemmatize | |
return map(lambda token: token.lemma_.lower(), tokens) | |
def plot(tags, proba): | |
plt.style.use('dark_background') | |
plt.rcParams.update({'font.size': 16}) | |
fig, ax = plt.subplots(figsize=(12,9)) | |
ax.barh(tags, proba, align='center', color='darkred') | |
ax.set_yticks(tags, labels=tags) | |
ax.invert_yaxis() # labels read top-to-bottom | |
ax.set_xlabel('Score') | |
ax.set_title('Score/Tag') | |
for i, v in enumerate(proba): | |
ax.text(v - 0.065, i + 0.05, str(round(v, 2))) | |
plt.xlim(0, 1) | |
plt.show() | |
def predict_words(X): | |
y_bin = model.predict(X) | |
y_tags = " ".join(tags_binarizer.inverse_transform(y_bin)[0]) | |
return y_tags | |
def proba_chart(X): | |
y_proba = model.predict_proba(X)[0] | |
tags = list(dict(sorted(tags_binarizer.ts.count.items())).keys()) | |
# combine | |
data = list(zip(tags, y_proba)) | |
# sort | |
data = sorted(data, key=lambda tag_value: tag_value[1], reverse=True) | |
# keep values >= min_score | |
data = list(filter(lambda tag_value: tag_value[1] >= 0.1, data)) | |
# we have our two dimensions for chart | |
tags, proba = zip(*data) | |
# build chart | |
plt.style.use('dark_background') | |
plt.rcParams.update({'font.size': 16}) | |
fig, ax = plt.subplots(figsize=(12,9)) | |
ax.barh(tags, proba, align='center', color='darkred') | |
ax.set_yticks(tags, labels=tags) | |
ax.invert_yaxis() # labels read top-to-bottom | |
ax.set_xlabel('Score') | |
ax.set_title('Score/Tag') | |
for i, v in enumerate(proba): | |
ax.text(v - 0.065, i + 0.05, str(round(v, 2))) | |
plt.xlim(0, 1) | |
return fig | |
def predict(title: str , post: str): | |
text = title + " " + post | |
lemmes = np.array([' '.join(list(lemmatize(text)))]) | |
X = tfidf.transform(lemmes) | |
# predicted words | |
words = predict_words(X) | |
# proba chart | |
chart = proba_chart(X) | |
return words, chart | |
demo = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Textbox(label="Title", lines=1, placeholder="Title..."), | |
gr.Textbox(label="Post", lines=20, placeholder="Post...")], | |
outputs=[gr.Textbox(label="Tags"), gr.Plot()]) | |
demo.launch() |