Spaces:
Runtime error
Runtime error
import os | |
import time | |
# ruff: noqa: E402 | |
# os.system("pip install --upgrade torch transformers sentencepiece scipy cpm_kernels accelerate bitsandbytes loguru") | |
os.system("pip install torch transformers sentencepiece loguru") | |
from pathlib import Path | |
import torch | |
from logru import logger | |
from transformers import AutoModel, AutoTokenizer | |
# fix timezone in Linux | |
os.environ["TZ"] = "Asia/Shanghai" | |
try: | |
time.tzset() # type: ignore # pylint: disable=no-member | |
except Exception: | |
# Windows | |
logger.warning("Windows, cant run time.tzset()") | |
model_name = "THUDM/chatglm2-6b-int4" # 3.9G | |
tokenizer = AutoTokenizer.from_pretrained( | |
"THUDM/chatglm2-6b-int4", trust_remote_code=True | |
) | |
has_cuda = torch.cuda.is_available() | |
# has_cuda = False # force cpu | |
logger.debug("load") | |
if has_cuda: | |
if model_name.endswith("int4"): | |
model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda() | |
else: | |
model = ( | |
AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda().half() | |
) | |
else: | |
model = AutoModel.from_pretrained( | |
model_name, trust_remote_code=True | |
).half() # .float() .half().float() | |
model = model.eval() | |
logger.debug("done load") | |
# tokenizer = AutoTokenizer.from_pretrained("openchat/openchat_v2_w") | |
# model = AutoModelForCausalLM.from_pretrained("openchat/openchat_v2_w", load_in_8bit_fp32_cpu_offload=True, load_in_8bit=True) | |
model_path = model.config._dict["model_name_or_path"] | |
logger.debug(f"{model_path=}") | |
model_size_gb = Path(model_path).stat().st_size / 2**30 | |
logger.info(f"{model_name=} {model_size_gb=:.2f} GB") | |
# with gr.Blocks() as demo: | |
# chatbot = gr.Chatbot() | |
# msg = gr.Textbox() | |
# clear = gr.ClearButton([msg, chatbot]) | |
# def respond(message, chat_history): | |
# response, chat_history = model.chat(tokenizer, message, history=chat_history, temperature=0.7, repetition_penalty=1.2, max_length=128) | |
# chat_history.append((message, response)) | |
# return "", chat_history | |
# msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
# demo.launch() | |