subs / app.py
mikegarts's picture
oops
d562d5f
raw
history blame
11.2 kB
### PRE ###
import os
os.system('git clone https://github.com/ggerganov/whisper.cpp.git')
os.system('make -C ./whisper.cpp')
MODELS_TO_DOWNLOAD = ['base', 'small', 'tiny', 'medium'] # ['tiny', 'small', 'base', 'medium', 'large']
for model_name in MODELS_TO_DOWNLOAD:
os.system(f'bash ./whisper.cpp/models/download-ggml-model.sh {model_name}')
### BODY ###
import os
import requests
import json
import base64
import gradio as gr
from pathlib import Path
import pysrt
import pandas as pd
import re
import time
import subprocess
import shlex
from pytube import YouTube
import torch
INTRO_MSG = '''
#### <p>There are many not very widely spoken languages for which it is quite hard to find learning materials,
especially well dubbed videos (target language video with target language subs).
This tool will hopefully transcribe and add subs to your videos.
At least for me this is a nice tool to practice both listening and reading skills.
This is a 'one-click' variant of similar spaces found here on the HF hub.
<p>Speech Recognition is based on models from OpenAI Whisper - https://github.com/openai/whisper
<p> This space is using the c++ implementation by https://github.com/ggerganov/whisper.cpp
'''
whisper_models = MODELS_TO_DOWNLOAD #["medium"]#["base", "small", "medium", "large", "base.en"]
custom_models = []
combined_models = []
combined_models.extend(whisper_models)
combined_models.extend(custom_models)
LANGUAGES = {
"bg": "Bulgarian",
"en": "English",
"zh": "Chinese",
"de": "German",
"es": "Spanish",
"ru": "Russian",
"ko": "Korean",
"fr": "French",
"ja": "Japanese",
"pt": "Portuguese",
"tr": "Turkish",
"pl": "Polish",
"ca": "Catalan",
"nl": "Dutch",
"ar": "Arabic",
"sv": "Swedish",
"it": "Italian",
"id": "Indonesian",
"hi": "Hindi",
"fi": "Finnish",
"vi": "Vietnamese",
"he": "Hebrew",
"uk": "Ukrainian",
"el": "Greek",
"ms": "Malay",
"cs": "Czech",
"ro": "Romanian",
"da": "Danish",
"hu": "Hungarian",
"ta": "Tamil",
"no": "Norwegian",
"th": "Thai",
"ur": "Urdu",
"hr": "Croatian",
"lt": "Lithuanian",
"la": "Latin",
"mi": "Maori",
"ml": "Malayalam",
"cy": "Welsh",
"sk": "Slovak",
"te": "Telugu",
"fa": "Persian",
"lv": "Latvian",
"bn": "Bengali",
"sr": "Serbian",
"az": "Azerbaijani",
"sl": "Slovenian",
"kn": "Kannada",
"et": "Estonian",
"mk": "Macedonian",
"br": "Breton",
"eu": "Basque",
"is": "Icelandic",
"hy": "Armenian",
"ne": "Nepali",
"mn": "Mongolian",
"bs": "Bosnian",
"kk": "Kazakh",
"sq": "Albanian",
"sw": "Swahili",
"gl": "Galician",
"mr": "Marathi",
"pa": "Punjabi",
"si": "Sinhala",
"km": "Khmer",
"sn": "Shona",
"yo": "Yoruba",
"so": "Somali",
"af": "Afrikaans",
"oc": "Occitan",
"ka": "Georgian",
"be": "Belarusian",
"tg": "Tajik",
"sd": "Sindhi",
"gu": "Gujarati",
"am": "Amharic",
"yi": "Yiddish",
"lo": "Lao",
"uz": "Uzbek",
"fo": "Faroese",
"ht": "Haitian creole",
"ps": "Pashto",
"tk": "Turkmen",
"nn": "Nynorsk",
"mt": "Maltese",
"sa": "Sanskrit",
"lb": "Luxembourgish",
"my": "Myanmar",
"bo": "Tibetan",
"tl": "Tagalog",
"mg": "Malagasy",
"as": "Assamese",
"tt": "Tatar",
"haw": "Hawaiian",
"ln": "Lingala",
"ha": "Hausa",
"ba": "Bashkir",
"jw": "Javanese",
"su": "Sundanese",
}
# language code lookup by name, with a few language aliases
source_languages = {
**{language: code for code, language in LANGUAGES.items()}
}
source_language_list = [key[0] for key in source_languages.items()]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"DEVICE IS: {device}")
def get_youtube(video_url):
yt = YouTube(video_url)
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
print(f"Download complete - {abs_video_path}")
return abs_video_path
def run_command(command, app_state):
print(command)
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE)
while process.poll() is None:
time.sleep(5)
output = process.stdout.readline()
if output == '' and process.poll() is not None:
break
if output:
decoded = output.decode()
print(decoded)
app_state['output'] += decoded
rc = process.poll()
return rc
def speech_to_text(video_file_path,
selected_source_lang,
whisper_model,
app_state):
"""
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
This space is using c++ implementation by https://github.com/ggerganov/whisper.cpp
"""
if(video_file_path == None):
raise ValueError("Error no video input")
print(video_file_path)
_,file_ending = os.path.splitext(f'{video_file_path}')
input_wav_file = video_file_path.replace(file_ending, ".wav")
srt_path = input_wav_file + ".srt"
vtt_path = input_wav_file + ".vtt"
try:
print(f'file enging is {file_ending}, starting conversion to wav')
subs_paths = video_file_path.replace(file_ending, ".wav")
if os.path.exists(subs_paths):
os.remove(subs_paths)
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{subs_paths}"')
print("conversion to wav ready")
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
try:
print("starting whisper c++")
os.system(f'rm -f {srt_path}')
run_command(f'./whisper.cpp/main "{input_wav_file}" -t {os.cpu_count()} -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt -ovtt',
app_state)
# os.system(f'./whisper.cpp/main "{input_wav_file}" -t {os.cpu_count()} -l {source_languages.get(selected_source_lang)} -m ./whisper.cpp/models/ggml-{whisper_model}.bin -osrt -ovtt')
print("whisper c++ finished")
except Exception as e:
raise RuntimeError("Error running Whisper cpp model")
print(f'Subtitles path {srt_path}, {vtt_path}')
return [vtt_path, srt_path]
def create_video_player(subs_files, video_in):
print(f"create_video_player - {subs_files}, {video_in}")
with open(subs_files[0], "rb") as file:
subtitle_base64 = base64.b64encode(file.read())
with open(video_in, "rb") as file:
video_base64 = base64.b64encode(file.read())
video_player = f'''<video id="video" controls preload="metadata">
<source src="data:video/mp4;base64,{str(video_base64)[2:-1]}" type="video/mp4" />
<track
label="English"
kind="subtitles"
srclang="en"
src="data:text/vtt;base64,{str(subtitle_base64)[2:-1]}"
default />
</video>
'''
print('create_video_player - Done')
return video_player
# ---- Gradio Layout -----
video_in = gr.Video(label="Video file", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
video_out = gr.Video(label="Video Out", mirror_webcam=False)
selected_source_lang = gr.Dropdown(choices=source_language_list,
type="value",
value= source_language_list[0], #"Let the model analyze",
label="Spoken language in video",
interactive=True)
selected_whisper_model = gr.Dropdown(choices=whisper_models,
type="value",
value=whisper_models[0],#"base",
label="Selected Whisper model",
interactive=True)
subtitle_files = gr.File(
label="Download subtitles",
file_count="multiple",
type="file",
interactive=False,
)
video_player = gr.HTML('<p>video will be played here')
eventslider = gr.Slider(visible=False)
status_msg = gr.Markdown('Status')
output_label = gr.Textbox('', interactive=False, show_label=False)
demo = gr.Blocks()
demo.encrypt = False
def set_app_msg(app_state, msg):
app_state['status_msg'] = msg
def transcribe(app_state, youtube_url_in, selected_source_lang, selected_whisper_model):
app_state['output'] = ''
set_app_msg(app_state, 'Downloading the movie ...')
video_file_path = get_youtube(youtube_url_in)
set_app_msg(app_state, f'Running the speech to text model {selected_source_lang}/{selected_whisper_model}. This can take some time.')
subtitle_files = speech_to_text(video_file_path, selected_source_lang, selected_whisper_model, app_state)
set_app_msg(app_state, f'Creating the video player ...')
video_player = create_video_player(subtitle_files, video_file_path)
set_app_msg(app_state, f'Transcribing done, generating video player')
return subtitle_files, video_player
def on_change_event(app_state):
print(f'Running! {app_state}')
return app_state['status_msg'], app_state['output']
with demo:
app_state = gr.State({
'running': False,
'status_msg': '',
'output': ''
})
with gr.Row():
with gr.Column():
gr.Markdown(INTRO_MSG)
gr.Markdown('''### Copy any non-private Youtube video URL to box below or click one of the examples.''')
examples = gr.Examples(examples=["https://www.youtube.com/watch?v=UjAn3Pza3qo", "https://www.youtube.com/watch?v=oOZivhYfPD4"],
label="Examples", inputs=[youtube_url_in])
# Inspiration from https://huggingface.co/spaces/vumichien/whisper-speaker-diarization
with gr.Row():
with gr.Column():
youtube_url_in.render()
selected_source_lang.render()
selected_whisper_model.render()
download_youtube_btn = gr.Button("Transcribe the video")
download_youtube_btn.click(transcribe, [app_state, youtube_url_in, selected_source_lang, selected_whisper_model], [subtitle_files, video_player])
eventslider.render()
status_msg.render()
output_label.render()
subtitle_files.render()
video_player.render()
with gr.Row():
gr.Markdown('This app is based on [this code](https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles/tree/main) by RASMUS.')
dep = demo.load(on_change_event, inputs=[app_state], outputs=[status_msg, output_label], every=10)
#### RUN ###
is_kaggle = os.environ.get('KAGGLE_KERNEL_RUN_TYPE')
print(is_kaggle)
if is_kaggle:
demo.queue().launch(share=True, debug=True)
else:
demo.queue().launch()