research_guru / app.py
mikeion's picture
Update app.py
1b57d37
raw
history blame
11.4 kB
import os
import requests
from io import BytesIO
from PyPDF2 import PdfReader
import pandas as pd
from openai.embeddings_utils import get_embedding, cosine_similarity
import openai
import pkg_resources
import streamlit as st
import numpy as np
messages = [
{"role": "system", "content": "You are SummarizeGPT, a large language model whose expertise is reading and summarizing scientific papers."}
]
class Chatbot():
def parse_paper(self, pdf):
# This function parses the PDF and returns a list of dictionaries with the text,
# font size, and x and y coordinates of each text element in the PDF
print("Parsing paper")
number_of_pages = len(pdf.pages)
print(f"Total number of pages: {number_of_pages}")
# This is the list that will contain all the text elements in the PDF and will be returned by the function
paper_text = []
for i in range(number_of_pages):
# Iterate through each page in the PDF, and extract the text elements. pdf.pages is a list of Page objects.
page = pdf.pages[i]
# This is the list that will contain all the text elements in the current page
page_text = []
def visitor_body(text, cm, tm, fontDict, fontSize):
# tm is a 6-element tuple of floats that represent a 2x3 matrix, which is the text matrix for the text.
# The first two elements are the horizontal and vertical scaling factors, the third and fourth elements
# are the horizontal and vertical shear factors, and the fifth and sixth elements are the horizontal and vertical translation factors.
# x and y are the coordinates of the text element
x = tm[4]
y = tm[5]
# ignore header/footer, and empty text.
# The y coordinate is used to filter out the header and footer of the paper
# The length of the text is used to filter out empty text
if (y > 50 and y < 720) and (len(text.strip()) > 1):
page_text.append({
# The fontsize is used to separate paragraphs into different elements in the paper_text list
'fontsize': fontSize,
# The text is stripped of whitespace and the \x03 character
'text': text.strip().replace('\x03', ''),
# The x and y coordinates are used to separate paragraphs into different elements in the paper_text list
'x': x,
'y': y
})
# Extract the text elements from the page
_ = page.extract_text(visitor_text=visitor_body)
# Instantiate variables to be used in the loop. The first text element in the page_text list is used to initialize the variables
prev_y = None
prev_font_size = None
paragraph = ''
# Iterate through the page_text list and add the text to the paragraph string.
# y_diff and font_size_diff are used to separate paragraphs into different elements in the paper_text list by
# checking the y coordinate and the font size of the current text element and comparing it to the previous text element
for idx, t in enumerate(page_text):
if prev_y is None:
y_diff = abs(t['y'] - prev_y)
font_size_diff = abs(t['fontsize'] - prev_font_size)
# y_diff > 10 and font_size_diff > 1 are used to separate paragraphs into different elements in the paper_text list
if y_diff > 10 or font_size_diff > 1:
# Add paragraph to paper_text when the y_diff is too large or the font size is too different
# This is to separate paragraphs into different elements in the paper_text list
# This is done by checking the y coordinate and the font size of the current text element
paper_text.append({
'fontsize': prev_font_size,
'text': paragraph.strip(),
'page': i
})
paragraph = ''
# Add text to paragraph, and update the variables.
paragraph += f" {t['text']}"
prev_y = t['y']
prev_font_size = t['fontsize']
# Add last paragraph when reaching the end of the page_text
if idx == len(page_text) - 1:
paper_text.append({
'fontsize': prev_font_size,
'text': paragraph.strip(),
'page': i
})
print("Done parsing paper")
return paper_text
def paper_df(self, pdf):
print('Creating dataframe')
filtered_pdf= []
for row in pdf:
if len(row['text']) < 30:
continue
filtered_pdf.append(row)
df = pd.DataFrame(filtered_pdf)
print(df.shape)
print(df.head)
# remove elements with identical df[text] and df[page] values
df = df.drop_duplicates(subset=['text', 'page'], keep='first')
df['length'] = df['text'].apply(lambda x: len(x))
print('Done creating dataframe')
return df
def calculate_embeddings(self, df):
print('Calculating embeddings')
openai.api_key = os.getenv('OPENAI_API_KEY')
embedding_model = "text-embedding-ada-002"
# This is going to create embeddings for subsets of the PDF
embeddings = np.vstack(df.text.apply(lambda x: get_embedding(x, engine=embedding_model)))
return embeddings
def search_embeddings(self, df, query, n=3, pprint=True):
# Step 1. Get an embedding for the question being asked to the PDF
query_embedding = get_embedding(
query,
engine="text-embedding-ada-002"
)
# Step 2. Create a FAISS index and add the embeddings
d = embeddings.shape[1]
# Use the L2 distance metric
index = faiss.IndexFlatL2(d)
index.add(embeddings)
# Step 3. Search the index for the embedding of the question
D, I = index.search(query_embedding.reshape(1,d), n)
# Step 4. Get the top n results from the dataframe
results = df.iloc[I[0]]
results['similarity'] = D[0]
results = results.reset_index(drop=True)
# Make a dictionary of the first n results with the page number as the key and the text as the value
global sources
sources = []
for i in range(n):
# append the page number and the text as a dict to the sources list
sources.append({'Page '+str(results.iloc[i]['page']): results.iloc[i]['text'][:150]+'...'})
print(sources)
return results.head(n)
def create_prompt(self, df, user_input):
result = self.search_embeddings(df, user_input, n=3)
print(result)
prompt = """You are a large language model whose expertise is reading and and providing answers about research papers.
You are given a query and a series of text embeddings from a paper in order of their cosine similarity to the query.
You must take the given embeddings, as well as what you know from your model weights and knowledge of various fields of research to provide an answer to the query
that lines up with what was provided in the text.
Given the question: """+ user_input + """
and the following embeddings as data:
1.""" + str(result.iloc[0]['text']) + """
2.""" + str(result.iloc[1]['text']) + """
3.""" + str(result.iloc[2]['text']) + """
Return a detailed answer based on the paper. If the person asks you to summarize what is in the paper, do your best to provide a summary of the paper.:"""
print('Done creating prompt')
return prompt
def gpt(self, prompt):
openai.api_key = os.getenv('OPENAI_API_KEY')
print('got API key')
messages.append({"role": "user", "content": prompt})
r = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
answer = r['choices'][0]['message']['content']
response = {'answer': answer, 'sources': sources}
return response
def reply(self, prompt):
print(prompt)
prompt = self.create_prompt(df, prompt)
return self.gpt(prompt)
def process_pdf(file):
print("Processing pdf")
pdf = PdfReader(BytesIO(file))
chatbot = Chatbot()
paper_text = chatbot.parse_paper(pdf)
global df
df = chatbot.paper_df(paper_text)
df = chatbot.calculate_embeddings(df)
print("Done processing pdf")
def download_pdf(url):
chatbot = Chatbot()
r = requests.get(str(url))
print(r.headers)
pdf = PdfReader(BytesIO(r.content))
paper_text = chatbot.parse_paper(pdf)
global df
df = chatbot.paper_df(paper_text)
df = chatbot.calculate_embeddings(df)
print("Done processing pdf")
def show_pdf(file_content):
base64_pdf = base64.b64encode(file_content).decode('utf-8')
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="800" height="800" type="application/pdf"></iframe>'
st.markdown(pdf_display, unsafe_allow_html=True)
def main():
st.title("Research Paper Guru")
st.subheader("Mike Ion - https://github.com/mikeion")
st.subheader("Ask a question about a research paper and get an answer with sources!")
st.subheader("Upload PDF or Enter URL")
pdf_option = st.selectbox("Choose an option:", ["Upload PDF", "Enter URL"])
chatbot = Chatbot()
if pdf_option == "Upload PDF":
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
if uploaded_file is not None:
file_content = uploaded_file.read()
process_pdf(file_content)
st.success("PDF uploaded and processed successfully!")
show_pdf(file_content)
elif pdf_option == "Enter URL":
url = st.text_input("Enter the URL of the PDF:")
if url:
if st.button("Download and process PDF"):
try:
r = requests.get(str(url))
content = r.content
download_pdf(url)
st.success("PDF downloaded and processed successfully!")
show_pdf(content)
except Exception as e:
st.error(f"An error occurred while processing the PDF: {e}")
query = st.text_input("Enter your query:")
if query:
if st.button("Get answer"):
response = chatbot.reply(query)
st.write(response['answer'])
st.write("Sources:")
for source in response['sources']:
st.write(source)
if __name__ == "__main__":
main()