mikeion commited on
Commit
d0beb15
·
1 Parent(s): 7a0b900

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -115,8 +115,9 @@ class Chatbot():
115
  print('Calculating embeddings')
116
  openai.api_key = os.getenv('OPENAI_API_KEY')
117
  embedding_model = "text-embedding-ada-002"
118
- # This is going to create embeddings for subsets of the PDF
119
- embeddings = np.vstack(df[df['text'].apply(lambda x: isinstance(x, str))]['text'].apply(lambda x: get_embedding(x, engine=embedding_model)))
 
120
  return embeddings
121
 
122
  def search_embeddings(self, embeddings, df, query, n=3, pprint=True):
@@ -126,6 +127,7 @@ class Chatbot():
126
  query,
127
  engine="text-embedding-ada-002"
128
  )
 
129
  # Step 2. Create a FAISS index and add the embeddings
130
  d = embeddings.shape[1]
131
  # Use the L2 distance metric
 
115
  print('Calculating embeddings')
116
  openai.api_key = os.getenv('OPENAI_API_KEY')
117
  embedding_model = "text-embedding-ada-002"
118
+ # Get the embeddings for each text element in the dataframe
119
+ embeddings = df.text.apply([lambda x: get_embedding(x, engine=embedding_model)])
120
+ embeddings = np.array(embeddings, dtype=np.float32)
121
  return embeddings
122
 
123
  def search_embeddings(self, embeddings, df, query, n=3, pprint=True):
 
127
  query,
128
  engine="text-embedding-ada-002"
129
  )
130
+ query_embedding = np.array(query_embedding, dtype=np.float32)
131
  # Step 2. Create a FAISS index and add the embeddings
132
  d = embeddings.shape[1]
133
  # Use the L2 distance metric