mikeion commited on
Commit
efeb6fd
·
1 Parent(s): a27a101

Add application file

Browse files
Files changed (2) hide show
  1. app.py +228 -0
  2. requirements.txt +13 -0
app.py ADDED
@@ -0,0 +1,228 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+
5
+
6
+ import os
7
+ import requests
8
+ from io import BytesIO
9
+ from PyPDF2 import PdfReader
10
+ import pandas as pd
11
+ from openai.embeddings_utils import get_embedding, cosine_similarity
12
+ import openai
13
+ import pkg_resources
14
+ import streamlit as st
15
+ import numpy as np
16
+
17
+
18
+
19
+ messages = [
20
+ {"role": "system", "content": "You are SummarizeGPT, a large language model whose expertise is reading and summarizing scientific papers."}
21
+ ]
22
+
23
+ class Chatbot():
24
+
25
+ def parse_paper(self, pdf):
26
+ print("Parsing paper")
27
+ number_of_pages = len(pdf.pages)
28
+ print(f"Total number of pages: {number_of_pages}")
29
+ paper_text = []
30
+ for i in range(number_of_pages):
31
+ page = pdf.pages[i]
32
+ page_text = []
33
+
34
+ def visitor_body(text, cm, tm, fontDict, fontSize):
35
+ x = tm[4]
36
+ y = tm[5]
37
+ # ignore header/footer
38
+ if (y > 50 and y < 720) and (len(text.strip()) > 1):
39
+ page_text.append({
40
+ 'fontsize': fontSize,
41
+ 'text': text.strip().replace('\x03', ''),
42
+ 'x': x,
43
+ 'y': y
44
+ })
45
+
46
+ _ = page.extract_text(visitor_text=visitor_body)
47
+
48
+ blob_font_size = None
49
+ blob_text = ''
50
+ processed_text = []
51
+
52
+ for t in page_text:
53
+ if t['fontsize'] == blob_font_size:
54
+ blob_text += f" {t['text']}"
55
+ if len(blob_text) >= 2000:
56
+ processed_text.append({
57
+ 'fontsize': blob_font_size,
58
+ 'text': blob_text,
59
+ 'page': i
60
+ })
61
+ blob_font_size = None
62
+ blob_text = ''
63
+ else:
64
+ if blob_font_size is not None and len(blob_text) >= 1:
65
+ processed_text.append({
66
+ 'fontsize': blob_font_size,
67
+ 'text': blob_text,
68
+ 'page': i
69
+ })
70
+ blob_font_size = t['fontsize']
71
+ blob_text = t['text']
72
+ paper_text += processed_text
73
+ print("Done parsing paper")
74
+ # print(paper_text)
75
+ return paper_text
76
+
77
+ def paper_df(self, pdf):
78
+ print('Creating dataframe')
79
+ filtered_pdf= []
80
+ for row in pdf:
81
+ if len(row['text']) < 30:
82
+ continue
83
+ filtered_pdf.append(row)
84
+ df = pd.DataFrame(filtered_pdf)
85
+ print(df.shape)
86
+ print(df.head)
87
+ # remove elements with identical df[text] and df[page] values
88
+ df = df.drop_duplicates(subset=['text', 'page'], keep='first')
89
+ df['length'] = df['text'].apply(lambda x: len(x))
90
+ print('Done creating dataframe')
91
+ return df
92
+
93
+ def calculate_embeddings(self, df):
94
+ print('Calculating embeddings')
95
+ openai.api_key = os.getenv('OPENAI_API_KEY')
96
+ embedding_model = "text-embedding-ada-002"
97
+ # This is going to create embeddings for subsets of the PDF
98
+ embeddings = df.text.apply([lambda x: get_embedding(x, engine=embedding_model)])
99
+ df["embeddings"] = embeddings
100
+ print('Done calculating embeddings')
101
+ print(pkg_resources.get_distribution("openai").version)
102
+ return df
103
+
104
+
105
+
106
+ def search_embeddings(self, df, query, n=3, pprint=True):
107
+
108
+ # Step 1. Get an embedding for the question being asked to the PDF
109
+ query_embedding = get_embedding(
110
+ query,
111
+ engine="text-embedding-ada-002"
112
+ )
113
+ # Step 2. Create a column in the dataframe that contains the cosine similarity (distance) between the query and the text in the dataframe
114
+ df["similarity"] = df.embeddings.apply(lambda x: cosine_similarity(x, query_embedding))
115
+ # Step 3. Sort the dataframe by the similarity column
116
+ results = df.sort_values("similarity", ascending=False, ignore_index=True)
117
+ # make a dictionary of the the first three results with the page number as the key and the text as the value. The page number is a column in the dataframe.
118
+ results = results.head(n)
119
+ global sources
120
+ sources = []
121
+ for i in range(n):
122
+ # append the page number and the text as a dict to the sources list
123
+ sources.append({'Page '+str(results.iloc[i]['page']): results.iloc[i]['text'][:150]+'...'})
124
+ print(sources)
125
+ return results.head(n)
126
+
127
+ def create_prompt(self, df, user_input):
128
+ result = self.search_embeddings(df, user_input, n=3)
129
+ print(result)
130
+ prompt = """You are a large language model whose expertise is reading and and providing answers about research papers.
131
+ You are given a query and a series of text embeddings from a paper in order of their cosine similarity to the query.
132
+ You must take the given embeddings, as well as what you know from your model weights and knowledge of various fields of research to provide an answer to the query
133
+ that lines up with what was provided in the text.
134
+
135
+ Given the question: """+ user_input + """
136
+
137
+ and the following embeddings as data:
138
+
139
+ 1.""" + str(result.iloc[0]['text']) + """
140
+ 2.""" + str(result.iloc[1]['text']) + """
141
+ 3.""" + str(result.iloc[2]['text']) + """
142
+
143
+ Return a detailed answer based on the paper. If the person asks you to summarize what is in the paper, do your best to provide a summary of the paper.:"""
144
+
145
+ print('Done creating prompt')
146
+ return prompt
147
+
148
+ def gpt(self, prompt):
149
+ openai.api_key = os.getenv('OPENAI_API_KEY')
150
+ print('got API key')
151
+ messages.append({"role": "user", "content": prompt})
152
+ r = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
153
+ answer = r['choices'][0]['message']['content']
154
+ response = {'answer': answer, 'sources': sources}
155
+ return response
156
+
157
+ def reply(self, prompt):
158
+ print(prompt)
159
+ prompt = self.create_prompt(df, prompt)
160
+ return self.gpt(prompt)
161
+
162
+ def process_pdf(file):
163
+ print("Processing pdf")
164
+ pdf = PdfReader(BytesIO(file))
165
+ chatbot = Chatbot()
166
+ paper_text = chatbot.parse_paper(pdf)
167
+ global df
168
+ df = chatbot.paper_df(paper_text)
169
+ df = chatbot.calculate_embeddings(df)
170
+ print("Done processing pdf")
171
+
172
+ def download_pdf(url):
173
+ chatbot = Chatbot()
174
+ r = requests.get(str(url))
175
+ print(r.headers)
176
+ pdf = PdfReader(BytesIO(r.content))
177
+ paper_text = chatbot.parse_paper(pdf)
178
+ global df
179
+ df = chatbot.paper_df(paper_text)
180
+ df = chatbot.calculate_embeddings(df)
181
+ print("Done processing pdf")
182
+
183
+ def show_pdf(file_content):
184
+ base64_pdf = base64.b64encode(file_content).decode('utf-8')
185
+ pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="800" height="800" type="application/pdf"></iframe>'
186
+ st.markdown(pdf_display, unsafe_allow_html=True)
187
+
188
+
189
+ def main():
190
+ st.title("Research Paper Guru")
191
+ st.subheader("Upload PDF or Enter URL")
192
+
193
+ pdf_option = st.selectbox("Choose an option:", ["Upload PDF", "Enter URL"])
194
+ chatbot = Chatbot()
195
+
196
+ if pdf_option == "Upload PDF":
197
+ uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
198
+ if uploaded_file is not None:
199
+ file_content = uploaded_file.read()
200
+ process_pdf(uploaded_file.read())
201
+ st.success("PDF uploaded and processed successfully!")
202
+ show_pdf(file_content)
203
+
204
+ elif pdf_option == "Enter URL":
205
+ url = st.text_input("Enter the URL of the PDF:")
206
+ if url:
207
+ if st.button("Download and process PDF"):
208
+ try:
209
+ r = requests.get(str(url))
210
+ content = r.content
211
+ download_pdf(url)
212
+ st.success("PDF downloaded and processed successfully!")
213
+ show_pdf(content)
214
+ except Exception as e:
215
+ st.error(f"An error occurred while processing the PDF: {e}")
216
+
217
+ query = st.text_input("Enter your query:")
218
+ if query:
219
+ if st.button("Get answer"):
220
+ response = chatbot.reply(query)
221
+ st.write(response['answer'])
222
+ st.write("Sources:")
223
+ for source in response['sources']:
224
+ st.write(source)
225
+
226
+ if __name__ == "__main__":
227
+ main()
228
+
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ flask
2
+ PyPDF2
3
+ pandas
4
+ openai==0.27.2
5
+ requests
6
+ flask-cors
7
+ matplotlib
8
+ scipy
9
+ plotly
10
+ google-cloud-storage
11
+ gunicorn==20.1.0
12
+ scikit-learn==0.24.1
13
+ streamlit