Spaces:
Sleeping
Sleeping
Add application file
Browse files- app.py +228 -0
- requirements.txt +13 -0
app.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
|
6 |
+
import os
|
7 |
+
import requests
|
8 |
+
from io import BytesIO
|
9 |
+
from PyPDF2 import PdfReader
|
10 |
+
import pandas as pd
|
11 |
+
from openai.embeddings_utils import get_embedding, cosine_similarity
|
12 |
+
import openai
|
13 |
+
import pkg_resources
|
14 |
+
import streamlit as st
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
messages = [
|
20 |
+
{"role": "system", "content": "You are SummarizeGPT, a large language model whose expertise is reading and summarizing scientific papers."}
|
21 |
+
]
|
22 |
+
|
23 |
+
class Chatbot():
|
24 |
+
|
25 |
+
def parse_paper(self, pdf):
|
26 |
+
print("Parsing paper")
|
27 |
+
number_of_pages = len(pdf.pages)
|
28 |
+
print(f"Total number of pages: {number_of_pages}")
|
29 |
+
paper_text = []
|
30 |
+
for i in range(number_of_pages):
|
31 |
+
page = pdf.pages[i]
|
32 |
+
page_text = []
|
33 |
+
|
34 |
+
def visitor_body(text, cm, tm, fontDict, fontSize):
|
35 |
+
x = tm[4]
|
36 |
+
y = tm[5]
|
37 |
+
# ignore header/footer
|
38 |
+
if (y > 50 and y < 720) and (len(text.strip()) > 1):
|
39 |
+
page_text.append({
|
40 |
+
'fontsize': fontSize,
|
41 |
+
'text': text.strip().replace('\x03', ''),
|
42 |
+
'x': x,
|
43 |
+
'y': y
|
44 |
+
})
|
45 |
+
|
46 |
+
_ = page.extract_text(visitor_text=visitor_body)
|
47 |
+
|
48 |
+
blob_font_size = None
|
49 |
+
blob_text = ''
|
50 |
+
processed_text = []
|
51 |
+
|
52 |
+
for t in page_text:
|
53 |
+
if t['fontsize'] == blob_font_size:
|
54 |
+
blob_text += f" {t['text']}"
|
55 |
+
if len(blob_text) >= 2000:
|
56 |
+
processed_text.append({
|
57 |
+
'fontsize': blob_font_size,
|
58 |
+
'text': blob_text,
|
59 |
+
'page': i
|
60 |
+
})
|
61 |
+
blob_font_size = None
|
62 |
+
blob_text = ''
|
63 |
+
else:
|
64 |
+
if blob_font_size is not None and len(blob_text) >= 1:
|
65 |
+
processed_text.append({
|
66 |
+
'fontsize': blob_font_size,
|
67 |
+
'text': blob_text,
|
68 |
+
'page': i
|
69 |
+
})
|
70 |
+
blob_font_size = t['fontsize']
|
71 |
+
blob_text = t['text']
|
72 |
+
paper_text += processed_text
|
73 |
+
print("Done parsing paper")
|
74 |
+
# print(paper_text)
|
75 |
+
return paper_text
|
76 |
+
|
77 |
+
def paper_df(self, pdf):
|
78 |
+
print('Creating dataframe')
|
79 |
+
filtered_pdf= []
|
80 |
+
for row in pdf:
|
81 |
+
if len(row['text']) < 30:
|
82 |
+
continue
|
83 |
+
filtered_pdf.append(row)
|
84 |
+
df = pd.DataFrame(filtered_pdf)
|
85 |
+
print(df.shape)
|
86 |
+
print(df.head)
|
87 |
+
# remove elements with identical df[text] and df[page] values
|
88 |
+
df = df.drop_duplicates(subset=['text', 'page'], keep='first')
|
89 |
+
df['length'] = df['text'].apply(lambda x: len(x))
|
90 |
+
print('Done creating dataframe')
|
91 |
+
return df
|
92 |
+
|
93 |
+
def calculate_embeddings(self, df):
|
94 |
+
print('Calculating embeddings')
|
95 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
96 |
+
embedding_model = "text-embedding-ada-002"
|
97 |
+
# This is going to create embeddings for subsets of the PDF
|
98 |
+
embeddings = df.text.apply([lambda x: get_embedding(x, engine=embedding_model)])
|
99 |
+
df["embeddings"] = embeddings
|
100 |
+
print('Done calculating embeddings')
|
101 |
+
print(pkg_resources.get_distribution("openai").version)
|
102 |
+
return df
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
def search_embeddings(self, df, query, n=3, pprint=True):
|
107 |
+
|
108 |
+
# Step 1. Get an embedding for the question being asked to the PDF
|
109 |
+
query_embedding = get_embedding(
|
110 |
+
query,
|
111 |
+
engine="text-embedding-ada-002"
|
112 |
+
)
|
113 |
+
# Step 2. Create a column in the dataframe that contains the cosine similarity (distance) between the query and the text in the dataframe
|
114 |
+
df["similarity"] = df.embeddings.apply(lambda x: cosine_similarity(x, query_embedding))
|
115 |
+
# Step 3. Sort the dataframe by the similarity column
|
116 |
+
results = df.sort_values("similarity", ascending=False, ignore_index=True)
|
117 |
+
# make a dictionary of the the first three results with the page number as the key and the text as the value. The page number is a column in the dataframe.
|
118 |
+
results = results.head(n)
|
119 |
+
global sources
|
120 |
+
sources = []
|
121 |
+
for i in range(n):
|
122 |
+
# append the page number and the text as a dict to the sources list
|
123 |
+
sources.append({'Page '+str(results.iloc[i]['page']): results.iloc[i]['text'][:150]+'...'})
|
124 |
+
print(sources)
|
125 |
+
return results.head(n)
|
126 |
+
|
127 |
+
def create_prompt(self, df, user_input):
|
128 |
+
result = self.search_embeddings(df, user_input, n=3)
|
129 |
+
print(result)
|
130 |
+
prompt = """You are a large language model whose expertise is reading and and providing answers about research papers.
|
131 |
+
You are given a query and a series of text embeddings from a paper in order of their cosine similarity to the query.
|
132 |
+
You must take the given embeddings, as well as what you know from your model weights and knowledge of various fields of research to provide an answer to the query
|
133 |
+
that lines up with what was provided in the text.
|
134 |
+
|
135 |
+
Given the question: """+ user_input + """
|
136 |
+
|
137 |
+
and the following embeddings as data:
|
138 |
+
|
139 |
+
1.""" + str(result.iloc[0]['text']) + """
|
140 |
+
2.""" + str(result.iloc[1]['text']) + """
|
141 |
+
3.""" + str(result.iloc[2]['text']) + """
|
142 |
+
|
143 |
+
Return a detailed answer based on the paper. If the person asks you to summarize what is in the paper, do your best to provide a summary of the paper.:"""
|
144 |
+
|
145 |
+
print('Done creating prompt')
|
146 |
+
return prompt
|
147 |
+
|
148 |
+
def gpt(self, prompt):
|
149 |
+
openai.api_key = os.getenv('OPENAI_API_KEY')
|
150 |
+
print('got API key')
|
151 |
+
messages.append({"role": "user", "content": prompt})
|
152 |
+
r = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=messages)
|
153 |
+
answer = r['choices'][0]['message']['content']
|
154 |
+
response = {'answer': answer, 'sources': sources}
|
155 |
+
return response
|
156 |
+
|
157 |
+
def reply(self, prompt):
|
158 |
+
print(prompt)
|
159 |
+
prompt = self.create_prompt(df, prompt)
|
160 |
+
return self.gpt(prompt)
|
161 |
+
|
162 |
+
def process_pdf(file):
|
163 |
+
print("Processing pdf")
|
164 |
+
pdf = PdfReader(BytesIO(file))
|
165 |
+
chatbot = Chatbot()
|
166 |
+
paper_text = chatbot.parse_paper(pdf)
|
167 |
+
global df
|
168 |
+
df = chatbot.paper_df(paper_text)
|
169 |
+
df = chatbot.calculate_embeddings(df)
|
170 |
+
print("Done processing pdf")
|
171 |
+
|
172 |
+
def download_pdf(url):
|
173 |
+
chatbot = Chatbot()
|
174 |
+
r = requests.get(str(url))
|
175 |
+
print(r.headers)
|
176 |
+
pdf = PdfReader(BytesIO(r.content))
|
177 |
+
paper_text = chatbot.parse_paper(pdf)
|
178 |
+
global df
|
179 |
+
df = chatbot.paper_df(paper_text)
|
180 |
+
df = chatbot.calculate_embeddings(df)
|
181 |
+
print("Done processing pdf")
|
182 |
+
|
183 |
+
def show_pdf(file_content):
|
184 |
+
base64_pdf = base64.b64encode(file_content).decode('utf-8')
|
185 |
+
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="800" height="800" type="application/pdf"></iframe>'
|
186 |
+
st.markdown(pdf_display, unsafe_allow_html=True)
|
187 |
+
|
188 |
+
|
189 |
+
def main():
|
190 |
+
st.title("Research Paper Guru")
|
191 |
+
st.subheader("Upload PDF or Enter URL")
|
192 |
+
|
193 |
+
pdf_option = st.selectbox("Choose an option:", ["Upload PDF", "Enter URL"])
|
194 |
+
chatbot = Chatbot()
|
195 |
+
|
196 |
+
if pdf_option == "Upload PDF":
|
197 |
+
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
|
198 |
+
if uploaded_file is not None:
|
199 |
+
file_content = uploaded_file.read()
|
200 |
+
process_pdf(uploaded_file.read())
|
201 |
+
st.success("PDF uploaded and processed successfully!")
|
202 |
+
show_pdf(file_content)
|
203 |
+
|
204 |
+
elif pdf_option == "Enter URL":
|
205 |
+
url = st.text_input("Enter the URL of the PDF:")
|
206 |
+
if url:
|
207 |
+
if st.button("Download and process PDF"):
|
208 |
+
try:
|
209 |
+
r = requests.get(str(url))
|
210 |
+
content = r.content
|
211 |
+
download_pdf(url)
|
212 |
+
st.success("PDF downloaded and processed successfully!")
|
213 |
+
show_pdf(content)
|
214 |
+
except Exception as e:
|
215 |
+
st.error(f"An error occurred while processing the PDF: {e}")
|
216 |
+
|
217 |
+
query = st.text_input("Enter your query:")
|
218 |
+
if query:
|
219 |
+
if st.button("Get answer"):
|
220 |
+
response = chatbot.reply(query)
|
221 |
+
st.write(response['answer'])
|
222 |
+
st.write("Sources:")
|
223 |
+
for source in response['sources']:
|
224 |
+
st.write(source)
|
225 |
+
|
226 |
+
if __name__ == "__main__":
|
227 |
+
main()
|
228 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
PyPDF2
|
3 |
+
pandas
|
4 |
+
openai==0.27.2
|
5 |
+
requests
|
6 |
+
flask-cors
|
7 |
+
matplotlib
|
8 |
+
scipy
|
9 |
+
plotly
|
10 |
+
google-cloud-storage
|
11 |
+
gunicorn==20.1.0
|
12 |
+
scikit-learn==0.24.1
|
13 |
+
streamlit
|