mikepastor11 commited on
Commit
d181195
1 Parent(s): 7c6ad29

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -18
app.py CHANGED
@@ -47,29 +47,29 @@ def get_text_chunks(text):
47
  return chunks
48
 
49
 
50
- def get_vectorstore(text_chunks):
51
- # embeddings = OpenAIEmbeddings()
52
 
53
- # pip install InstructorEmbedding
54
- # pip install sentence-transformers==2.2.2
55
- embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
56
 
57
- # from InstructorEmbedding import INSTRUCTOR
58
- # model = INSTRUCTOR('hkunlp/instructor-xl')
59
- # sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
60
- # instruction = "Represent the Science title:"
61
- # embeddings = model.encode([[instruction, sentence]])
62
 
63
- # embeddings = model.encode(text_chunks)
64
- print('have Embeddings: ')
65
 
66
- # text_chunks="this is a test"
67
- # FAISS, Chroma and other vector databases
68
- #
69
- vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
70
- print('FAISS succeeds: ')
71
 
72
- return vectorstore
73
 
74
  # def get_conversation_chain(vectorstore):
75
  # # llm = ChatOpenAI()
 
47
  return chunks
48
 
49
 
50
+ # def get_vectorstore(text_chunks):
51
+ # # embeddings = OpenAIEmbeddings()
52
 
53
+ # # pip install InstructorEmbedding
54
+ # # pip install sentence-transformers==2.2.2
55
+ # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
56
 
57
+ # # from InstructorEmbedding import INSTRUCTOR
58
+ # # model = INSTRUCTOR('hkunlp/instructor-xl')
59
+ # # sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
60
+ # # instruction = "Represent the Science title:"
61
+ # # embeddings = model.encode([[instruction, sentence]])
62
 
63
+ # # embeddings = model.encode(text_chunks)
64
+ # print('have Embeddings: ')
65
 
66
+ # # text_chunks="this is a test"
67
+ # # FAISS, Chroma and other vector databases
68
+ # #
69
+ # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
70
+ # print('FAISS succeeds: ')
71
 
72
+ # return vectorstore
73
 
74
  # def get_conversation_chain(vectorstore):
75
  # # llm = ChatOpenAI()