File size: 11,400 Bytes
01fc03c
25ba25f
01fc03c
25ba25f
01fc03c
 
25ba25f
01fc03c
 
 
 
4cc5efa
01fc03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e2d25
 
 
01fc03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e2d25
01fc03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5f1f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2e2d25
01fc03c
1b5f1f5
01fc03c
1b5f1f5
 
01fc03c
1b5f1f5
 
01fc03c
1b5f1f5
 
 
01fc03c
1b5f1f5
b2e2d25
01fc03c
1b5f1f5
b2e2d25
01fc03c
1b5f1f5
 
 
01fc03c
1b5f1f5
01fc03c
1b5f1f5
01fc03c
1b5f1f5
01fc03c
 
 
 
 
 
25ba25f
01fc03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5f1f5
01fc03c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b758977
1b5f1f5
4cc5efa
01fc03c
 
1b5f1f5
01fc03c
 
 
 
 
 
 
1b5f1f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
01fc03c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
##########################################################################
#   app.py   -  Pennwick Honeybee Robot
#
#   HuggingFace Spaces application to provide honeybee expertise
#           with open-source models ( hkunlp/instructor-xl )
#
#   Mike Pastor  February 21, 2024


import streamlit as st
from streamlit.components.v1 import html
# from dotenv import load_dotenv
from PyPDF2 import PdfReader
from PIL import Image

# Local file
from htmlTemplates import css, bot_template, user_template

#  from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.embeddings import HuggingFaceInstructEmbeddings

# from langchain.vectorstores import FAISS
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain

#  from langchain.llms import HuggingFaceHub
from langchain_community.llms import HuggingFaceHub

##################################################################################
#  Admin flags
DISPLAY_DIALOG_LINES = 6

SESSION_STARTED = False

# MODEL_NAME="deepset/roberta-base-squad2"

MODEL_NAME="BEE-spoke-data/TinyLlama-3T-1.1bee"

##################################################################################
def extract_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text


##################################################################################
#  Chunk size and overlap must not exceed the models capacity!
#
def extract_bitesize_pieces(text):
    text_splitter = CharacterTextSplitter(
        separator="\n",
        chunk_size=800,  # 1000
        chunk_overlap=200,
        length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks


##################################################################################
def prepare_embedding_vectors(text_chunks):
    st.write('Here in vector store....', unsafe_allow_html=True)
    # embeddings = OpenAIEmbeddings()

    #  pip install InstructorEmbedding
    #  pip install sentence-transformers==2.2.2
    embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")

    st.write('Here in vector store - got embeddings ', unsafe_allow_html=True)
    #  from InstructorEmbedding import INSTRUCTOR
    # model = INSTRUCTOR('hkunlp/instructor-xl')
    # sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
    # instruction = "Represent the Science title:"
    # embeddings = model.encode([[instruction, sentence]])

    # embeddings = model.encode(text_chunks)
    print('have Embeddings:   ')

    # text_chunks="this is a test"
    #   FAISS,  Chroma and other vector databases
    #
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    st.write('FAISS succeeds:   ')

    return vectorstore


##################################################################################
def prepare_conversation(vectorstore):
    # llm = ChatOpenAI()
    #  llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
    #  google/bigbird-roberta-base     facebook/bart-large
    llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.7, "max_length": 512})

    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory,
    )
    return conversation_chain


##################################################################################
def process_user_question(user_question):


    # if not SESSION_STARTED:
    #     print('No Session')
    #     st.write( 'Please upload and analyze your PDF files first!')
    #     return

    if user_question == None:
        print('question is null')
        return
    if user_question == '':
        print('question is blank')
        return
    if st == None:
        print('session is null')
        return
    if st.session_state == None:
        print('session STATE is null')
        return

    print('question is: ', user_question)
    print('\nsession is: ', st)

    # try:
    #     response = st.session_state.conversation({'question': user_question})
    #     # response = st.session_state.conversation({'summarization': user_question})
    #     st.session_state.chat_history = response['chat_history']
    # Exception:
    #     st.write( 'Please upload and analyze your PDF files first!')
    #     return

    # st.empty()

    # try:
    #     st.session_state.conversation({'question': "Summarize the document"})
    #     # if "key" not in st.session_state:
    #     #     st.write('Good')
    # except:
    #     st.error("Please upload and analyze your PDF files first!")
    #     return

    # if st.session_state.conversation == None:
    #     st.error("Please upload and analyze your PDF files first!")
    #     return

    #
    # response = st.session_state.conversation({'question': user_question})
    # st.session_state.chat_history = response['chat_history']
    # results_size = len(response['chat_history'])
    #
    # results_string = ""
    #
    # print('results_size is: ', results_size)
    #
    # for i, message in enumerate(st.session_state.chat_history):
    #
    #     #  Scrolling does not display the last printed line,
    #     #    so only print the last 6 lines
    #     #
    #     print('results_size on msg: ', results_size, i, (results_size - DISPLAY_DIALOG_LINES))
    #     if results_size > DISPLAY_DIALOG_LINES:
    #         if i < (results_size - DISPLAY_DIALOG_LINES):
    #             continue
    #
    #     if i % 2 == 0:
    #         # st.write(user_template.replace(
    #         #     "{{MSG}}", message.content), unsafe_allow_html=True)
    #
    #         results_string += ("<p>" + message.content + "</p>")
    #
    #     else:
    #         # st.write(bot_template.replace(
    #         #     "{{MSG}}", message.content), unsafe_allow_html=True)
    #
    #         results_string += ("<p>" + "-- " + message.content + "</p>")

    st.write(('Question: ' + user_question), unsafe_allow_html=True)

    from transformers import pipeline

    # Choose a question answering pipeline (e.g., 'question-answering')
    nlp = pipeline("question-answering")

    # Specify the model name or identifier (e.g., 'deepset/roberta-base-squad2')
    model_name = MODEL_NAME

    # Prepare the question and context (optional)
    # question = "What is the capital of France?"
    # context = "France is a country located in Western Europe. It is bordered by the Atlantic Ocean to the west, the Mediterranean Sea to the south, and Belgium, Luxembourg, Germany, Switzerland, Italy, and Spain to the east and north."

    context = "You are an expert Apiarist and answer all questions regarding Honeybees."
    # context = " "

    # Ask the question
    answer = nlp(question= ('Question: '+user_question), context=context, model=model_name)

    # Print the answer
    print(f"Answer: {answer['answer']}")
    print(f"Score: {answer['score']}")

    st.write( ('Answer= '+answer['answer']), unsafe_allow_html=True)

    results_string = answer['answer'] + '     - Probability= ' + str( answer['score'] )

    html(results_string, height=100, scrolling=True)


###################################################################################
def main():
    print('Pennwick Starting up...\n')
    # Load the environment variables - if any
    # load_dotenv()

    ##################################################################################
    #  st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=":books:")
    # im = Image.open("robot_icon.ico")
    # st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=im )
    # st.set_page_config(page_title="Pennwick PDF Analyzer")

    # import base64
    # from PIL import Image

    # # Open your image
    # image = Image.open("robot_icon.ico")

    # # Convert image to base64 string
    # with open("robot_icon.ico", "rb") as f:
    #     encoded_string = base64.b64encode(f.read()).decode()

    # # Set page config with base64 string
    # st.set_page_config(page_title="Pennwick File Analyzer 2", page_icon=f"data:image/ico;base64,{encoded_string}")

    st.set_page_config(page_title="Pennwick Honeybee Robot", page_icon="./HoneybeeLogo.ico")

    print('prepared page...\n')

    ###################

    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    # st.header("Pennwick File Analyzer :shark:")
    # st.header("Pennwick File Analyzer 2")

    # st.image("robot_icon.png", width=96)
    st.image("./HoneybeeLogo.png", width=96)
    st.header(f"Pennwick Honeybee Robot")

    user_question = None
    user_question = st.text_input("Ask the  Open Source - "+MODEL_NAME+" - Model  any question about Honeybees...")
    if user_question != None:
        print('calling process question', user_question)
        process_user_question(user_question)

    # st.write( user_template, unsafe_allow_html=True)
    # st.write(user_template.replace( "{{MSG}}", "Hello robot!"), unsafe_allow_html=True)
    # st.write(bot_template.replace( "{{MSG}}", "Hello human!"), unsafe_allow_html=True)
    #
    # with st.sidebar:
    #
    #     st.subheader("Which documents would you like to analyze?")
    #     st.subheader("(no data is saved beyond the session)")
    #
    #     pdf_docs = st.file_uploader(
    #         "Upload your PDF documents here and click on 'Analyze'", accept_multiple_files=True)
    #
    #     # Upon button press
    #     if st.button("Analyze these files"):
    #         with st.spinner("Processing..."):
    #             #################################################################
    #             #  Track the overall time for file processing into Vectors
    #             # #
    #             from datetime import datetime
    #             global_now = datetime.now()
    #             global_current_time = global_now.strftime("%H:%M:%S")
    #             st.write("Vectorizing Files - Current Time =", global_current_time)
    #
    #             # get pdf text
    #             raw_text = extract_pdf_text(pdf_docs)
    #             #  st.write(raw_text)
    #
    #             # # get the text chunks
    #             text_chunks = extract_bitesize_pieces(raw_text)
    #             # st.write(text_chunks)
    #
    #             # # create vector store
    #             vectorstore = prepare_embedding_vectors(text_chunks)
    #
    #             # # create conversation chain
    #             st.session_state.conversation = prepare_conversation(vectorstore)
    #
    #             SESSION_STARTED = True
    #
    #             # Mission Complete!
    #             global_later = datetime.now()
    #             st.write("Files Vectorized - Total EXECUTION Time =",
    #                      (global_later - global_now), global_later)
    #

if __name__ == '__main__':
    main()