Spaces:
Sleeping
Sleeping
File size: 11,400 Bytes
01fc03c 25ba25f 01fc03c 25ba25f 01fc03c 25ba25f 01fc03c 4cc5efa 01fc03c b2e2d25 01fc03c b2e2d25 01fc03c 1b5f1f5 b2e2d25 01fc03c 1b5f1f5 01fc03c 1b5f1f5 01fc03c 1b5f1f5 01fc03c 1b5f1f5 01fc03c 1b5f1f5 b2e2d25 01fc03c 1b5f1f5 b2e2d25 01fc03c 1b5f1f5 01fc03c 1b5f1f5 01fc03c 1b5f1f5 01fc03c 1b5f1f5 01fc03c 25ba25f 01fc03c 1b5f1f5 01fc03c b758977 1b5f1f5 4cc5efa 01fc03c 1b5f1f5 01fc03c 1b5f1f5 01fc03c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
##########################################################################
# app.py - Pennwick Honeybee Robot
#
# HuggingFace Spaces application to provide honeybee expertise
# with open-source models ( hkunlp/instructor-xl )
#
# Mike Pastor February 21, 2024
import streamlit as st
from streamlit.components.v1 import html
# from dotenv import load_dotenv
from PyPDF2 import PdfReader
from PIL import Image
# Local file
from htmlTemplates import css, bot_template, user_template
# from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
# from langchain.vectorstores import FAISS
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
# from langchain.llms import HuggingFaceHub
from langchain_community.llms import HuggingFaceHub
##################################################################################
# Admin flags
DISPLAY_DIALOG_LINES = 6
SESSION_STARTED = False
# MODEL_NAME="deepset/roberta-base-squad2"
MODEL_NAME="BEE-spoke-data/TinyLlama-3T-1.1bee"
##################################################################################
def extract_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
##################################################################################
# Chunk size and overlap must not exceed the models capacity!
#
def extract_bitesize_pieces(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=800, # 1000
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
##################################################################################
def prepare_embedding_vectors(text_chunks):
st.write('Here in vector store....', unsafe_allow_html=True)
# embeddings = OpenAIEmbeddings()
# pip install InstructorEmbedding
# pip install sentence-transformers==2.2.2
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
st.write('Here in vector store - got embeddings ', unsafe_allow_html=True)
# from InstructorEmbedding import INSTRUCTOR
# model = INSTRUCTOR('hkunlp/instructor-xl')
# sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
# instruction = "Represent the Science title:"
# embeddings = model.encode([[instruction, sentence]])
# embeddings = model.encode(text_chunks)
print('have Embeddings: ')
# text_chunks="this is a test"
# FAISS, Chroma and other vector databases
#
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
st.write('FAISS succeeds: ')
return vectorstore
##################################################################################
def prepare_conversation(vectorstore):
# llm = ChatOpenAI()
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
# google/bigbird-roberta-base facebook/bart-large
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.7, "max_length": 512})
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory,
)
return conversation_chain
##################################################################################
def process_user_question(user_question):
# if not SESSION_STARTED:
# print('No Session')
# st.write( 'Please upload and analyze your PDF files first!')
# return
if user_question == None:
print('question is null')
return
if user_question == '':
print('question is blank')
return
if st == None:
print('session is null')
return
if st.session_state == None:
print('session STATE is null')
return
print('question is: ', user_question)
print('\nsession is: ', st)
# try:
# response = st.session_state.conversation({'question': user_question})
# # response = st.session_state.conversation({'summarization': user_question})
# st.session_state.chat_history = response['chat_history']
# Exception:
# st.write( 'Please upload and analyze your PDF files first!')
# return
# st.empty()
# try:
# st.session_state.conversation({'question': "Summarize the document"})
# # if "key" not in st.session_state:
# # st.write('Good')
# except:
# st.error("Please upload and analyze your PDF files first!")
# return
# if st.session_state.conversation == None:
# st.error("Please upload and analyze your PDF files first!")
# return
#
# response = st.session_state.conversation({'question': user_question})
# st.session_state.chat_history = response['chat_history']
# results_size = len(response['chat_history'])
#
# results_string = ""
#
# print('results_size is: ', results_size)
#
# for i, message in enumerate(st.session_state.chat_history):
#
# # Scrolling does not display the last printed line,
# # so only print the last 6 lines
# #
# print('results_size on msg: ', results_size, i, (results_size - DISPLAY_DIALOG_LINES))
# if results_size > DISPLAY_DIALOG_LINES:
# if i < (results_size - DISPLAY_DIALOG_LINES):
# continue
#
# if i % 2 == 0:
# # st.write(user_template.replace(
# # "{{MSG}}", message.content), unsafe_allow_html=True)
#
# results_string += ("<p>" + message.content + "</p>")
#
# else:
# # st.write(bot_template.replace(
# # "{{MSG}}", message.content), unsafe_allow_html=True)
#
# results_string += ("<p>" + "-- " + message.content + "</p>")
st.write(('Question: ' + user_question), unsafe_allow_html=True)
from transformers import pipeline
# Choose a question answering pipeline (e.g., 'question-answering')
nlp = pipeline("question-answering")
# Specify the model name or identifier (e.g., 'deepset/roberta-base-squad2')
model_name = MODEL_NAME
# Prepare the question and context (optional)
# question = "What is the capital of France?"
# context = "France is a country located in Western Europe. It is bordered by the Atlantic Ocean to the west, the Mediterranean Sea to the south, and Belgium, Luxembourg, Germany, Switzerland, Italy, and Spain to the east and north."
context = "You are an expert Apiarist and answer all questions regarding Honeybees."
# context = " "
# Ask the question
answer = nlp(question= ('Question: '+user_question), context=context, model=model_name)
# Print the answer
print(f"Answer: {answer['answer']}")
print(f"Score: {answer['score']}")
st.write( ('Answer= '+answer['answer']), unsafe_allow_html=True)
results_string = answer['answer'] + ' - Probability= ' + str( answer['score'] )
html(results_string, height=100, scrolling=True)
###################################################################################
def main():
print('Pennwick Starting up...\n')
# Load the environment variables - if any
# load_dotenv()
##################################################################################
# st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=":books:")
# im = Image.open("robot_icon.ico")
# st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=im )
# st.set_page_config(page_title="Pennwick PDF Analyzer")
# import base64
# from PIL import Image
# # Open your image
# image = Image.open("robot_icon.ico")
# # Convert image to base64 string
# with open("robot_icon.ico", "rb") as f:
# encoded_string = base64.b64encode(f.read()).decode()
# # Set page config with base64 string
# st.set_page_config(page_title="Pennwick File Analyzer 2", page_icon=f"data:image/ico;base64,{encoded_string}")
st.set_page_config(page_title="Pennwick Honeybee Robot", page_icon="./HoneybeeLogo.ico")
print('prepared page...\n')
###################
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
# st.header("Pennwick File Analyzer :shark:")
# st.header("Pennwick File Analyzer 2")
# st.image("robot_icon.png", width=96)
st.image("./HoneybeeLogo.png", width=96)
st.header(f"Pennwick Honeybee Robot")
user_question = None
user_question = st.text_input("Ask the Open Source - "+MODEL_NAME+" - Model any question about Honeybees...")
if user_question != None:
print('calling process question', user_question)
process_user_question(user_question)
# st.write( user_template, unsafe_allow_html=True)
# st.write(user_template.replace( "{{MSG}}", "Hello robot!"), unsafe_allow_html=True)
# st.write(bot_template.replace( "{{MSG}}", "Hello human!"), unsafe_allow_html=True)
#
# with st.sidebar:
#
# st.subheader("Which documents would you like to analyze?")
# st.subheader("(no data is saved beyond the session)")
#
# pdf_docs = st.file_uploader(
# "Upload your PDF documents here and click on 'Analyze'", accept_multiple_files=True)
#
# # Upon button press
# if st.button("Analyze these files"):
# with st.spinner("Processing..."):
# #################################################################
# # Track the overall time for file processing into Vectors
# # #
# from datetime import datetime
# global_now = datetime.now()
# global_current_time = global_now.strftime("%H:%M:%S")
# st.write("Vectorizing Files - Current Time =", global_current_time)
#
# # get pdf text
# raw_text = extract_pdf_text(pdf_docs)
# # st.write(raw_text)
#
# # # get the text chunks
# text_chunks = extract_bitesize_pieces(raw_text)
# # st.write(text_chunks)
#
# # # create vector store
# vectorstore = prepare_embedding_vectors(text_chunks)
#
# # # create conversation chain
# st.session_state.conversation = prepare_conversation(vectorstore)
#
# SESSION_STARTED = True
#
# # Mission Complete!
# global_later = datetime.now()
# st.write("Files Vectorized - Total EXECUTION Time =",
# (global_later - global_now), global_later)
#
if __name__ == '__main__':
main()
|