File size: 10,344 Bytes
d86aa1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import cv2
import gradio as gr
import onnxruntime
from face_judgement_align import IDphotos_create
from hivisionai.hycv.vision import add_background
from layoutCreate import generate_layout_photo, generate_layout_image
import pathlib
import numpy as np

size_list_dict = {"一寸": (413, 295), "二寸": (626, 413),
                  "教师资格证": (413, 295), "国家公务员考试": (413, 295), "初级会计考试": (413, 295)}
color_list_dict = {"蓝色": (86, 140, 212), "白色": (255, 255, 255), "红色": (233, 51, 35)}


# 设置Gradio examples
def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])


# 检测RGB是否超出范围,如果超出则约束到0~255之间
def range_check(value, min_value=0, max_value=255):
    value = int(value)
    if value <= min_value:
        value = min_value
    elif value > max_value:
        value = max_value
    return value


def idphoto_inference(input_image,
                      mode_option,
                      size_list_option,
                      color_option,
                      render_option,
                      custom_color_R,
                      custom_color_G,
                      custom_color_B,
                      custom_size_height,
                      custom_size_width,
                      head_measure_ratio=0.2,
                      head_height_ratio=0.45,
                      top_distance_max=0.12,
                      top_distance_min=0.10):
    idphoto_json = {
        "size_mode": mode_option,
        "color_mode": color_option,
        "render_mode": render_option,
    }

    # 如果尺寸模式选择的是尺寸列表
    if idphoto_json["size_mode"] == "尺寸列表":
        idphoto_json["size"] = size_list_dict[size_list_option]
    # 如果尺寸模式选择的是自定义尺寸
    elif idphoto_json["size_mode"] == "自定义尺寸":
        id_height = int(custom_size_height)
        id_width = int(custom_size_width)
        if id_height < id_width or min(id_height, id_width) < 100 or max(id_height, id_width) > 1800:
            return {
                img_output_standard: gr.update(value=None),
                img_output_standard_hd: gr.update(value=None),
                notification: gr.update(value="宽度应不大于长度;长宽不应小于100,大于1800", visible=True)}
        idphoto_json["size"] = (id_height, id_width)
    else:
        idphoto_json["size"] = (None, None)

    # 如果颜色模式选择的是自定义底色
    if idphoto_json["color_mode"] == "自定义底色":
        idphoto_json["color_bgr"] = (range_check(custom_color_R),
                                     range_check(custom_color_G),
                                     range_check(custom_color_B))
    else:
        idphoto_json["color_bgr"] = color_list_dict[color_option]

    result_image_hd, result_image_standard, typography_arr, typography_rotate, \
    _, _, _, _, status = IDphotos_create(input_image,
                                         mode=idphoto_json["size_mode"],
                                         size=idphoto_json["size"],
                                         head_measure_ratio=head_measure_ratio,
                                         head_height_ratio=head_height_ratio,
                                         align=False,
                                         beauty=False,
                                         fd68=None,
                                         human_sess=sess,
                                         IS_DEBUG=False,
                                         top_distance_max=top_distance_max,
                                         top_distance_min=top_distance_min)

    # 如果检测到人脸数量不等于1
    if status == 0:
        result_messgae = {
            img_output_standard: gr.update(value=None),
            img_output_standard_hd: gr.update(value=None),
            notification: gr.update(value="人脸数量不等于1", visible=True)
        }

    # 如果检测到人脸数量等于1
    else:
        if idphoto_json["render_mode"] == "纯色":
            result_image_standard = np.uint8(
                add_background(result_image_standard, bgr=idphoto_json["color_bgr"]))
            result_image_hd = np.uint8(add_background(result_image_hd, bgr=idphoto_json["color_bgr"]))
        elif idphoto_json["render_mode"] == "上下渐变(白)":
            result_image_standard = np.uint8(
                add_background(result_image_standard, bgr=idphoto_json["color_bgr"], mode="updown_gradient"))
            result_image_hd = np.uint8(
                add_background(result_image_hd, bgr=idphoto_json["color_bgr"], mode="updown_gradient"))
        else:
            result_image_standard = np.uint8(
                add_background(result_image_standard, bgr=idphoto_json["color_bgr"], mode="center_gradient"))
            result_image_hd = np.uint8(
                add_background(result_image_hd, bgr=idphoto_json["color_bgr"], mode="center_gradient"))

        if idphoto_json["size_mode"] == "只换底":
            result_layout_image = gr.update(visible=False)
        else:
            typography_arr, typography_rotate = generate_layout_photo(input_height=idphoto_json["size"][0],
                                                                      input_width=idphoto_json["size"][1])

            result_layout_image = generate_layout_image(result_image_standard, typography_arr,
                                                        typography_rotate,
                                                        height=idphoto_json["size"][0],
                                                        width=idphoto_json["size"][1])

        result_messgae = {
            img_output_standard: result_image_standard,
            img_output_standard_hd: result_image_hd,
            img_output_layout: result_layout_image,
            notification: gr.update(visible=False)}

    return result_messgae


if __name__ == "__main__":
    HY_HUMAN_MATTING_WEIGHTS_PATH = "./hivision_modnet.onnx"
    sess = onnxruntime.InferenceSession(HY_HUMAN_MATTING_WEIGHTS_PATH)
    size_mode = ["尺寸列表", "只换底", "自定义尺寸"]
    size_list = ["一寸", "二寸", "教师资格证", "国家公务员考试", "初级会计考试"]
    colors = ["蓝色", "白色", "红色", "自定义底色"]
    render = ["纯色", "上下渐变(白)", "中心渐变(白)"]

    title = "<h1 id='title'>HivisionIDPhotos</h1>"
    description = "<h3>😎6.20更新:新增尺寸选择列表</h3>"
    css = '''
    h1#title, h3 {
      text-align: center;
    }
    '''

    demo = gr.Blocks(css=css)

    with demo:
        gr.Markdown(title)
        gr.Markdown(description)
        with gr.Row():
            with gr.Column():
                img_input = gr.Image().style(height=350)
                mode_options = gr.Radio(choices=size_mode, label="证件照尺寸选项", value="尺寸列表", elem_id="size")
                # 预设尺寸下拉菜单
                with gr.Row(visible=True) as size_list_row:
                    size_list_options = gr.Dropdown(choices=size_list, label="预设尺寸", value="一寸", elem_id="size_list")

                with gr.Row(visible=False) as custom_size:
                    custom_size_height = gr.Number(value=413, label="height", interactive=True)
                    custom_size_wdith = gr.Number(value=295, label="width", interactive=True)

                color_options = gr.Radio(choices=colors, label="背景色", value="蓝色", elem_id="color")
                with gr.Row(visible=False) as custom_color:
                    custom_color_R = gr.Number(value=0, label="R", interactive=True)
                    custom_color_G = gr.Number(value=0, label="G", interactive=True)
                    custom_color_B = gr.Number(value=0, label="B", interactive=True)

                render_options = gr.Radio(choices=render, label="渲染方式", value="纯色", elem_id="render")

                img_but = gr.Button('开始制作')
                # 案例图片
                example_images = gr.Dataset(components=[img_input],
                                            samples=[[path.as_posix()]
                                                     for path in sorted(pathlib.Path('images').rglob('*.jpg'))])

            with gr.Column():
                notification = gr.Text(label="状态", visible=False)
                with gr.Row():
                    img_output_standard = gr.Image(label="标准照").style(height=350)
                    img_output_standard_hd = gr.Image(label="高清照").style(height=350)
                img_output_layout = gr.Image(label="六寸排版照").style(height=350)


            def change_color(colors):
                if colors == "自定义底色":
                    return {custom_color: gr.update(visible=True)}
                else:
                    return {custom_color: gr.update(visible=False)}

            def change_size_mode(size_option_item):
                if size_option_item == "自定义尺寸":
                    return {custom_size: gr.update(visible=True),
                            size_list_row: gr.update(visible=False)}
                elif size_option_item == "只换底":
                    return {custom_size: gr.update(visible=False),
                            size_list_row: gr.update(visible=False)}
                else:
                    return {custom_size: gr.update(visible=False),
                            size_list_row: gr.update(visible=True)}

        color_options.input(change_color, inputs=[color_options], outputs=[custom_color])
        mode_options.input(change_size_mode, inputs=[mode_options], outputs=[custom_size, size_list_row])

        img_but.click(idphoto_inference,
                      inputs=[img_input, mode_options, size_list_options, color_options, render_options,
                              custom_color_R, custom_color_G, custom_color_B,
                              custom_size_height, custom_size_wdith],
                      outputs=[img_output_standard, img_output_standard_hd, img_output_layout, notification],
                      queue=True)
        example_images.click(fn=set_example_image, inputs=[example_images], outputs=[img_input])

    demo.launch(enable_queue=True)