Spaces:
Runtime error
Runtime error
File size: 28,186 Bytes
d86aa1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 |
import cv2
import numpy as np
from hivisionai.hycv.utils import get_box_pro
from hivisionai.hycv.vision import cover_image, draw_picture_dots
from math import fabs, sin, radians, cos
def opencv_rotate(img, angle):
h, w = img.shape[:2]
center = (w / 2, h / 2)
scale = 1.0
# 2.1获取M矩阵
"""
M矩阵
[
cosA -sinA (1-cosA)*centerX+sinA*centerY
sinA cosA -sinA*centerX+(1-cosA)*centerY
]
"""
M = cv2.getRotationMatrix2D(center, angle, scale)
# 2.2 新的宽高,radians(angle) 把角度转为弧度 sin(弧度)
new_H = int(w * fabs(sin(radians(angle))) + h * fabs(cos(radians(angle))))
new_W = int(h * fabs(sin(radians(angle))) + w * fabs(cos(radians(angle))))
# 2.3 平移
M[0, 2] += (new_W - w) / 2
M[1, 2] += (new_H - h) / 2
rotate = cv2.warpAffine(img, M, (new_W, new_H), borderValue=(0, 0, 0))
return rotate
def transformationNeck2(image:np.ndarray, per_to_side:float=0.8)->np.ndarray:
"""
透视变换脖子函数,输入图像和四个点(矩形框)
矩形框内的图像可能是不完整的(边角有透明区域)
我们将根据透视变换将矩形框内的图像拉伸成和矩形框一样的形状.
算法分为几个步骤: 选择脖子的四个点 -> 选定这四个点拉伸后的坐标 -> 透视变换 -> 覆盖原图
"""
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
height, width = a.shape
def locate_side(image_:np.ndarray, x_:int, y_max:int) -> int:
# 寻找x=y, 且 y <= y_max 上从下往上第一个非0的点,如果没找到就返回0
y_ = 0
for y_ in range(y_max - 1, -1, -1):
if image_[y_][x_] != 0:
break
return y_
def locate_width(image_:np.ndarray, y_:int, mode, left_or_right:int=None):
# 从y=y这个水平线上寻找两边的非零点
# 增加left_or_right的原因在于为下面check_jaw服务
if mode==1: # 左往右
x_ = 0
if left_or_right is None:
left_or_right = 0
for x_ in range(left_or_right, width):
if image_[y_][x_] != 0:
break
else: # 右往左
x_ = width
if left_or_right is None:
left_or_right = width - 1
for x_ in range(left_or_right, -1, -1):
if image_[y_][x_] != 0:
break
return x_
def check_jaw(image_:np.ndarray, left_, right_):
"""
检查选择的点是否与截到下巴,如果截到了,就往下平移一个单位
"""
f= True # True代表没截到下巴
# [x, y]
for x_cell in range(left_[0] + 1, right_[0]):
if image_[left_[1]][x_cell] == 0:
f = False
break
if f is True:
return left_, right_
else:
y_ = left_[1] + 2
x_left_ = locate_width(image_, y_, mode=1, left_or_right=left_[0])
x_right_ = locate_width(image_, y_, mode=2, left_or_right=right_[0])
left_, right_ = check_jaw(image_, [x_left_, y_], [x_right_, y_])
return left_, right_
# 选择脖子的四个点,核心在于选择上面的两个点,这两个点的确定的位置应该是"宽出来的"两个点
_, _ ,_, a = cv2.split(image) # 这应该是一个四通道的图像
ret,a_thresh = cv2.threshold(a,127,255,cv2.THRESH_BINARY)
y_high, y_low, x_left, x_right = get_box_pro(image=image, model=1) # 直接返回矩阵信息
y_left_side = locate_side(image_=a_thresh, x_=x_left, y_max=y_low) # 左边的点的y轴坐标
y_right_side = locate_side(image_=a_thresh, x_=x_right, y_max=y_low) # 右边的点的y轴坐标
y = min(y_left_side, y_right_side) # 将两点的坐标保持相同
cell_left_above, cell_right_above = check_jaw(a_thresh,[x_left, y], [x_right, y])
x_left, x_right = cell_left_above[0], cell_right_above[0]
# 此时我们寻找到了脖子的"宽出来的"两个点,这两个点作为上面的两个点, 接下来寻找下面的两个点
if per_to_side >1:
assert ValueError("per_to_side 必须小于1!")
# 在后面的透视变换中我会把它拉成矩形, 在这里我先获取四个点的高和宽
height_ = 150 # 这个值应该是个变化的值,与拉伸的长度有关,但是现在先规定为150
width_ = x_right - x_left # 其实也就是 cell_right_above[1] - cell_left_above[1]
y = int((y_low - y)*per_to_side + y) # 定位y轴坐标
cell_left_below, cell_right_bellow = ([locate_width(a_thresh, y_=y, mode=1), y], [locate_width(a_thresh, y_=y, mode=2), y])
# 四个点全齐,开始透视变换
# 寻找透视变换后的四个点,只需要变换below的两个点即可
# cell_left_below_final, cell_right_bellow_final = ([cell_left_above[1], y_low], [cell_right_above[1], y_low])
# 需要变换的四个点为 cell_left_above, cell_right_above, cell_left_below, cell_right_bellow
rect = np.array([cell_left_above, cell_right_above, cell_left_below, cell_right_bellow],
dtype='float32')
# 变化后的坐标点
dst = np.array([[0, 0], [width_, 0], [0 , height_], [width_, height_]],
dtype='float32')
# 计算变换矩阵
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (width_, height_))
final = cover_image(image=warped, background=image, mode=3, x=cell_left_above[0], y=cell_left_above[1])
# tmp = np.zeros(image.shape)
# final = cover_image(image=warped, background=tmp, mode=3, x=cell_left_above[0], y=cell_left_above[1])
# final = cover_image(image=image, background=final, mode=3, x=0, y=0)
return final
def transformationNeck(image:np.ndarray, cutNeckHeight:int, neckBelow:int,
toHeight:int,per_to_side:float=0.75) -> np.ndarray:
"""
脖子扩充算法, 其实需要输入的只是脖子扣出来的部分以及需要被扩充的高度/需要被扩充成的高度.
"""
height, width, channels = image.shape
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
def locate_width(image_:np.ndarray, y_:int, mode, left_or_right:int=None):
# 从y=y这个水平线上寻找两边的非零点
# 增加left_or_right的原因在于为下面check_jaw服务
if mode==1: # 左往右
x_ = 0
if left_or_right is None:
left_or_right = 0
for x_ in range(left_or_right, width):
if image_[y_][x_] != 0:
break
else: # 右往左
x_ = width
if left_or_right is None:
left_or_right = width - 1
for x_ in range(left_or_right, -1, -1):
if image_[y_][x_] != 0:
break
return x_
def check_jaw(image_:np.ndarray, left_, right_):
"""
检查选择的点是否与截到下巴,如果截到了,就往下平移一个单位
"""
f= True # True代表没截到下巴
# [x, y]
for x_cell in range(left_[0] + 1, right_[0]):
if image_[left_[1]][x_cell] == 0:
f = False
break
if f is True:
return left_, right_
else:
y_ = left_[1] + 2
x_left_ = locate_width(image_, y_, mode=1, left_or_right=left_[0])
x_right_ = locate_width(image_, y_, mode=2, left_or_right=right_[0])
left_, right_ = check_jaw(image_, [x_left_, y_], [x_right_, y_])
return left_, right_
x_left = locate_width(image_=a_thresh, mode=1, y_=cutNeckHeight)
x_right = locate_width(image_=a_thresh, mode=2, y_=cutNeckHeight)
# 在这里我们取消了对下巴的检查,原因在于输入的imageHeight并不能改变
# cell_left_above, cell_right_above = check_jaw(a_thresh, [x_left, imageHeight], [x_right, imageHeight])
cell_left_above, cell_right_above = [x_left, cutNeckHeight], [x_right, cutNeckHeight]
toWidth = x_right - x_left # 矩形宽
# 此时我们寻找到了脖子的"宽出来的"两个点,这两个点作为上面的两个点, 接下来寻找下面的两个点
if per_to_side >1:
assert ValueError("per_to_side 必须小于1!")
y_below = int((neckBelow - cutNeckHeight) * per_to_side + cutNeckHeight) # 定位y轴坐标
cell_left_below = [locate_width(a_thresh, y_=y_below, mode=1), y_below]
cell_right_bellow = [locate_width(a_thresh, y_=y_below, mode=2), y_below]
# 四个点全齐,开始透视变换
# 需要变换的四个点为 cell_left_above, cell_right_above, cell_left_below, cell_right_bellow
rect = np.array([cell_left_above, cell_right_above, cell_left_below, cell_right_bellow],
dtype='float32')
# 变化后的坐标点
dst = np.array([[0, 0], [toWidth, 0], [0 , toHeight], [toWidth, toHeight]],
dtype='float32')
M = cv2.getPerspectiveTransform(rect, dst)
warped = cv2.warpPerspective(image, M, (toWidth, toHeight))
# 将变换后的图像覆盖到原图上
final = cover_image(image=warped, background=image, mode=3, x=cell_left_above[0], y=cell_left_above[1])
return final
def bestJunctionCheck_beta(image:np.ndarray, stepSize:int=4, if_per:bool=False):
"""
最优衔接点检测算法, 去寻找脖子的"拐点"
"""
point_k = 1
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
height, width = a.shape
ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
y_high, y_low, x_left, x_right = get_box_pro(image=image, model=1) # 直接返回矩阵信息
def scan(y_:int, max_num:int=2):
num = 0
left = False
right = False
for x_ in range(width):
if a_thresh[y_][x_] != 0:
if x_ < width // 2 and left is False:
num += 1
left = True
elif x_ > width // 2 and right is False:
num += 1
right = True
return True if num >= max_num else False
def locate_neck_above():
"""
定位脖子的尖尖脚
"""
for y_ in range( y_high - 2, height):
if scan(y_):
return y_, y_
y_high_left, y_high_right = locate_neck_above()
def locate_width_pro(image_:np.ndarray, y_:int, mode):
"""
这会是一个生成器,用于生成脖子两边的轮廓
x_, y_ 是启始点的坐标,每一次寻找都会让y_+1
mode==1说明是找左边的边,即,image_[y_][x_] == 0 且image_[y_][x_ + 1] !=0 时跳出;
否则 当image_[y_][x_] != 0 时, x_ - 1; 当image_[y_][x_] == 0 且 image_[y_][x_ + 1] ==0 时x_ + 1
mode==2说明是找右边的边,即,image_[y_][x_] == 0 且image_[y_][x_ - 1] !=0 时跳出
否则 当image_[y_][x_] != 0 时, x_ + 1; 当image_[y_][x_] == 0 且 image_[y_][x_ - 1] ==0 时x_ - 1
"""
y_ += 1
if mode == 1:
x_ = 0
while 0 <= y_ < height and 0 <= x_ < width:
while image_[y_][x_] != 0 and x_ >= 0:
x_ -= 1
while image_[y_][x_] == 0 and image_[y_][x_ + 1] == 0 and x_ < width - 2:
x_ += 1
yield [y_, x_]
y_ += 1
elif mode == 2:
x_ = width-1
while 0 <= y_ < height and 0 <= x_ < width:
while image_[y_][x_] != 0 and x_ < width - 2: x_ += 1
while image_[y_][x_] == 0 and image_[y_][x_ - 1] == 0 and x_ >= 0: x_ -= 1
yield [y_, x_]
y_ += 1
yield False
def kGenerator(image_:np.ndarray, mode):
"""
导数生成器,用来生成每一个点对应的导数
"""
y_ = y_high_left if mode == 1 else y_high_right
c_generator = locate_width_pro(image_=image_, y_=y_, mode=mode)
for cell in c_generator:
nc = locate_width_pro(image_=image_, y_=cell[0] + stepSize, mode=mode)
nextCell = next(nc)
if nextCell is False:
yield False, False
else:
k = (cell[1] - nextCell[1]) / stepSize
yield k, cell
def findPt(image_:np.ndarray, mode):
k_generator = kGenerator(image_=image_, mode=mode)
k, cell = next(k_generator)
k_next, cell_next = next(k_generator)
if k is False:
raise ValueError("无法找到拐点!")
while k_next is not False:
k_next, cell_next = next(k_generator)
if (k_next < - 1 / stepSize) or k_next > point_k:
break
cell = cell_next
# return int(cell[0] + stepSize / 2)
return cell[0]
# 先找左边的拐点:
pointY_left = findPt(image_=a_thresh, mode=1)
# 再找右边的拐点:
pointY_right = findPt(image_=a_thresh, mode=2)
point = (pointY_left + pointY_right) // 2
if if_per is True:
point = (pointY_left + pointY_right) // 2
return point / (y_low - y_high)
pointX_left = next(locate_width_pro(image_=a_thresh, y_= point - 1, mode=1))[1]
pointX_right = next(locate_width_pro(image_=a_thresh, y_=point- 1, mode=2))[1]
return [pointX_left, point], [pointX_right, point]
def bestJunctionCheck(image:np.ndarray, offset:int, stepSize:int=4):
"""
最优点检测算算法输入一张脖子图片(无论这张图片是否已经被二值化,我都认为没有被二值化),输出一个小数(脖子最上方与衔接点位置/脖子图像长度)
与beta版不同的是它新增了一个阈值限定内容.
对于脖子而言,我我们首先可以定位到上面的部分,然后根据上面的这个点向下进行遍历检测.
与beta版类似,我们使用一个stepSize来用作斜率的检测
但是对于遍历检测而言,与beta版不同的是,我们需要对遍历的地方进行一定的限制.
限制的标准是,如果当前遍历的点的横坐标和起始点横坐标的插值超过了某个阈值,则认为是越界.
"""
point_k = 1
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
height, width = a.shape
ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
# 直接返回脖子的位置信息, 修正系数为0, get_box_pro内部也封装了二值化,所以直接输入原图
y_high, y_low, _, _ = get_box_pro(image=image, model=1, correction_factor=0)
# 真正有用的只有上下y轴的两个值...
# 首先当然是确定起始点的位置,我们用同样的scan扫描函数进行行遍历.
def scan(y_:int, max_num:int=2):
num = 0
# 设定两个值,分别代表脖子的左边和右边
left = False
right = False
for x_ in range(width):
if a_thresh[y_][x_] != 0:
# 检测左边
if x_ < width // 2 and left is False:
num += 1
left = True
# 检测右边
elif x_ > width // 2 and right is False:
num += 1
right = True
return True if num >= max_num else False
def locate_neck_above():
"""
定位脖子的尖尖脚
"""
# y_high就是脖子的最高点
for y_ in range(y_high, height):
if scan(y_):
return y_
y_start = locate_neck_above() # 得到遍历的初始高度
if y_low - y_start < stepSize: assert ValueError("脖子太小!")
# 然后获取一下初始的坐标点
x_left, x_right = 0, width
for x_left_ in range(0, width):
if a_thresh[y_start][x_left_] != 0:
x_left = x_left_
break
for x_right_ in range(width -1 , -1, -1):
if a_thresh[y_start][x_right_] != 0:
x_right = x_right_
break
# 接下来我定义两个生成器,首先是脖子轮廓(向下寻找的)生成器,每进行一次next,生成器会返回y+1的脖子轮廓点
def contoursGenerator(image_:np.ndarray, y_:int, mode):
"""
这会是一个生成器,用于生成脖子两边的轮廓
y_ 是启始点的y坐标,每一次寻找都会让y_+1
mode==1说明是找左边的边,即,image_[y_][x_] == 0 且image_[y_][x_ + 1] !=0 时跳出;
否则 当image_[y_][x_] != 0 时, x_ - 1; 当image_[y_][x_] == 0 且 image_[y_][x_ + 1] ==0 时x_ + 1
mode==2说明是找右边的边,即,image_[y_][x_] == 0 且image_[y_][x_ - 1] !=0 时跳出
否则 当image_[y_][x_] != 0 时, x_ + 1; 当image_[y_][x_] == 0 且 image_[y_][x_ - 1] ==0 时x_ - 1
"""
y_ += 1
try:
if mode == 1:
x_ = 0
while 0 <= y_ < height and 0 <= x_ < width:
while image_[y_][x_] != 0 and x_ >= 0: x_ -= 1
# 这里其实会有bug,不过可以不管
while x_ < width and image_[y_][x_] == 0 and image_[y_][x_ + 1] == 0: x_ += 1
yield [y_, x_]
y_ += 1
elif mode == 2:
x_ = width-1
while 0 <= y_ < height and 0 <= x_ < width:
while x_ < width and image_[y_][x_] != 0: x_ += 1
while x_ >= 0 and image_[y_][x_] == 0 and image_[y_][x_ - 1] == 0: x_ -= 1
yield [y_, x_]
y_ += 1
# 当处理失败则返回False
except IndexError:
yield False
# 然后是斜率生成器,这个生成器依赖子轮廓生成器,每一次生成轮廓后会计算斜率,另一个点的选取和stepSize有关
def kGenerator(image_: np.ndarray, mode):
"""
导数生成器,用来生成每一个点对应的导数
"""
y_ = y_start
# 对起始点建立一个生成器, mode=1时是左边轮廓,mode=2时是右边轮廓
c_generator = contoursGenerator(image_=image_, y_=y_, mode=mode)
for cell in c_generator:
# 寻找距离当前cell距离为stepSize的轮廓点
kc = contoursGenerator(image_=image_, y_=cell[0] + stepSize, mode=mode)
kCell = next(kc)
if kCell is False:
# 寻找失败
yield False, False
else:
# 寻找成功,返回当坐标点和斜率值
# 对于左边而言,斜率必然是前一个点的坐标减去后一个点的坐标
# 对于右边而言,斜率必然是后一个点的坐标减去前一个点的坐标
k = (cell[1] - kCell[1]) / stepSize if mode == 1 else (kCell[1] - cell[1]) / stepSize
yield k, cell
# 接着开始写寻找算法,需要注意的是我们是分两边选择的
def findPt(image_:np.ndarray, mode):
x_base = x_left if mode == 1 else x_right
k_generator = kGenerator(image_=image_, mode=mode)
k, cell = k_generator.__next__()
if k is False:
raise ValueError("无法找到拐点!")
k_next, cell_next = k_generator.__next__()
while k_next is not False:
cell = cell_next
if cell[1] > x_base and mode == 2:
x_base = cell[1]
elif cell[1] < x_base and mode == 1:
x_base = cell[1]
# 跳出循环的方式一:斜率超过了某个值
if k_next > point_k:
print("K out")
break
# 跳出循环的方式二:超出阈值
elif abs(cell[1] - x_base) > offset:
print("O out")
break
k_next, cell_next = k_generator.__next__()
if abs(cell[1] - x_base) > offset:
cell[0] = cell[0] - offset - 1
return cell[0]
# 先找左边的拐点:
pointY_left = findPt(image_=a_thresh, mode=1)
# 再找右边的拐点:
pointY_right = findPt(image_=a_thresh, mode=2)
point = min(pointY_right, pointY_left)
per = (point - y_high) / (y_low - y_high)
# pointX_left = next(contoursGenerator(image_=a_thresh, y_= point- 1, mode=1))[1]
# pointX_right = next(contoursGenerator(image_=a_thresh, y_=point - 1, mode=2))[1]
# return [pointX_left, point], [pointX_right, point]
return per
def checkSharpCorner(image:np.ndarray):
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
height, width = a.shape
ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
# 直接返回脖子的位置信息, 修正系数为0, get_box_pro内部也封装了二值化,所以直接输入原图
y_high, y_low, _, _ = get_box_pro(image=image, model=1, correction_factor=0)
def scan(y_:int, max_num:int=2):
num = 0
# 设定两个值,分别代表脖子的左边和右边
left = False
right = False
for x_ in range(width):
if a_thresh[y_][x_] != 0:
# 检测左边
if x_ < width // 2 and left is False:
num += 1
left = True
# 检测右边
elif x_ > width // 2 and right is False:
num += 1
right = True
return True if num >= max_num else False
def locate_neck_above():
"""
定位脖子的尖尖脚
"""
# y_high就是脖子的最高点
for y_ in range(y_high, height):
if scan(y_):
return y_
y_start = locate_neck_above()
return y_start
def checkJaw(image:np.ndarray, y_start:int):
# 寻找"马鞍点"
_, _, _, a = cv2.split(image) # 这应该是一个四通道的图像
height, width = a.shape
ret, a_thresh = cv2.threshold(a, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
if width <=1: raise TypeError("图像太小!")
x_left, x_right = 0, width - 1
for x_left in range(width):
if a_thresh[y_start][x_left] != 0:
while a_thresh[y_start][x_left] != 0: x_left += 1
break
for x_right in range(width-1, -1, -1):
if a_thresh[y_start][x_right] != 0:
while a_thresh[y_start][x_right] != 0: x_right -= 1
break
point_list_y = []
point_list_x = []
for x in range(x_left, x_right):
y = y_start
while a_thresh[y][x] == 0: y += 1
point_list_y.append(y)
point_list_x.append(x)
y = max(point_list_y)
x = point_list_x[point_list_y.index(y)]
return x, y
def checkHairLOrR(cloth_image_input_cut,
input_a,
neck_a,
cloth_image_input_top_y,
cutbar_top=0.4,
cutbar_bottom=0.5,
threshold=0.3):
"""
本函数用于检测衣服是否被头发遮挡,当前只考虑左右是否被遮挡,即"一刀切"
返回int
0代表没有被遮挡
1代表左边被遮挡
2代表右边被遮挡
3代表全被遮挡了
约定,输入的图像是一张灰度图,且被二值化过.
"""
def per_darkPoint(img:np.ndarray) -> int:
"""
用于遍历相加图像上的黑点.
然后返回黑点数/图像面积
"""
h, w = img.shape
sum_darkPoint = 0
for y in range(h):
for x in range(w):
if img[y][x] == 0:
sum_darkPoint += 1
return sum_darkPoint / (h * w)
if threshold < 0 or threshold > 1: raise TypeError("阈值设置必须在0和1之间!")
# 裁出cloth_image_input_cut按高度40%~50%的区域-cloth_image_input_cutbar,并转换为A矩阵,做二值化
cloth_image_input_height = cloth_image_input_cut.shape[0]
_, _, _, cloth_image_input_cutbar = cv2.split(cloth_image_input_cut[
int(cloth_image_input_height * cutbar_top):int(
cloth_image_input_height * cutbar_bottom), :])
_, cloth_image_input_cutbar = cv2.threshold(cloth_image_input_cutbar, 127, 255, cv2.THRESH_BINARY)
# 裁出input_image、neck_image的A矩阵的对应区域,并做二值化
input_a_cutbar = input_a[cloth_image_input_top_y + int(cloth_image_input_height * cutbar_top):
cloth_image_input_top_y + int(cloth_image_input_height * cutbar_bottom), :]
_, input_a_cutbar = cv2.threshold(input_a_cutbar, 127, 255, cv2.THRESH_BINARY)
neck_a_cutbar = neck_a[cloth_image_input_top_y + int(cloth_image_input_height * cutbar_top):
cloth_image_input_top_y + int(cloth_image_input_height * cutbar_bottom), :]
_, neck_a_cutbar = cv2.threshold(neck_a_cutbar, 50, 255, cv2.THRESH_BINARY)
# 将三个cutbar合到一起-result_a_cutbar
input_a_cutbar = np.uint8(255 - input_a_cutbar)
result_a_cutbar = cv2.add(input_a_cutbar, cloth_image_input_cutbar)
result_a_cutbar = cv2.add(result_a_cutbar, neck_a_cutbar)
if_mask = 0
# 我们将图像 一刀切,分为左边和右边
height, width = result_a_cutbar.shape # 一通道图像
left_image = result_a_cutbar[:, :width//2]
right_image = result_a_cutbar[:, width//2:]
if per_darkPoint(left_image) > threshold:
if_mask = 1
if per_darkPoint(right_image) > threshold:
if_mask = 3 if if_mask == 1 else 2
return if_mask
def find_black(image):
"""
找黑色点函数,遇到输入矩阵中的第一个黑点,返回它的y值
"""
height, width = image.shape[0], image.shape[1]
for i in range(height):
for j in range(width):
if image[i, j] < 127:
return i
return None
def convert_black_array(image):
height, width = image.shape[0], image.shape[1]
mask = np.zeros([height, width])
for j in range(width):
for i in range(height):
if image[i, j] > 127:
mask[i:, j] = 1
break
return mask
def checkLongHair(neck_image, head_bottom_y, neck_top_y):
"""
长发检测函数,输入为head/neck图像,通过下巴是否为最低点,来判断是否为长发
:return 0 : 短发
:return 1 : 长发
"""
jaw_y = neck_top_y + checkJaw(neck_image, y_start=checkSharpCorner(neck_image))[1]
if jaw_y >= head_bottom_y-3:
return 0
else:
return 1
def checkLongHair2(head_bottom_y, cloth_top_y):
if head_bottom_y > cloth_top_y+10:
return 1
else:
return 0
if __name__ == "__main__":
for i in range(1, 8):
img = cv2.imread(f"./neck_temp/neck_image{i}.png", cv2.IMREAD_UNCHANGED)
# new = transformationNeck(image=img, cutNeckHeight=419,neckBelow=472, toHeight=150)
# point_list = bestJunctionCheck(img, offset=5, stepSize=3)
# per = bestJunctionCheck(img, offset=5, stepSize=3)
# # 返回一个小数的形式, 接下来我将它处理为两个点
point_list = []
# y_high_, y_low_, _, _ = get_box_pro(image=img, model=1, conreection_factor=0)
# _y = y_high_ + int((y_low_ - y_high_) * per)
# _, _, _, a_ = cv2.split(img) # 这应该是一个四通道的图像
# h, w = a_.shape
# r, a_t = cv2.threshold(a_, 127, 255, cv2.THRESH_BINARY) # 将透明图层二值化
# _x = 0
# for _x in range(w):
# if a_t[_y][_x] != 0:
# break
# point_list.append([_x, _y])
# for _x in range(w - 1, -1, -1):
# if a_t[_y][_x] != 0:
# break
# point_list.append([_x, _y])
y = checkSharpCorner(img)
point = checkJaw(image=img, y_start=y)
point_list.append(point)
new = draw_picture_dots(img, point_list, pen_size=2)
cv2.imshow(f"{i}", new)
cv2.waitKey(0) |