File size: 25,391 Bytes
d86aa1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
import math
import cv2
import numpy as np
from hivisionai.hycv.face_tools import face_detect_mtcnn
from hivisionai.hycv.utils import get_box_pro, CV2Bytes
from hivisionai.hycv.vision import resize_image_esp, IDphotos_cut, add_background, calTime, resize_image_by_min, \
    rotate_bound_4channels
import onnxruntime
from EulerZ import eulerZ
from beautyPlugin import makeBeautiful
from error import IDError
from imageTransform import standard_photo_resize, hollowOutFix, get_modnet_matting, draw_picture_dots, detect_distance
from layoutCreate import generate_layout_photo
from move_image import move

testImages = []


class LinearFunction_TwoDots(object):
    """
    通过两个坐标点构建线性函数
    """

    def __init__(self, dot1, dot2):
        self.d1 = dot1
        self.d2 = dot2
        self.mode = "normal"
        if self.d2.x != self.d1.x:
            self.k = (self.d2.y - self.d1.y) / max((self.d2.x - self.d1.x), 1)
            self.b = self.d2.y - self.k * self.d2.x
        else:
            self.mode = "x=1"

    def forward(self, input_, mode="x"):
        if mode == "x":
            if self.mode == "normal":
                return self.k * input_ + self.b
            else:
                return 0
        elif mode == "y":
            if self.mode == "normal":
                return (input_ - self.b) / self.k
            else:
                return self.d1.x

    def forward_x(self, x):
        if self.mode == "normal":
            return self.k * x + self.b
        else:
            return 0

    def forward_y(self, y):
        if self.mode == "normal":
            return (y - self.b) / self.k
        else:
            return self.d1.x


class Coordinate(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __str__(self):
        return "({}, {})".format(self.x, self.y)


@calTime
def face_number_and_angle_detection(input_image):
    """
    本函数的功能是利用机器学习算法计算图像中人脸的数目与关键点,并通过关键点信息来计算人脸在平面上的旋转角度。
    当前人脸数目!=1时,将raise一个错误信息并终止全部程序。
    Args:
        input_image: numpy.array(3 channels),用户上传的原图(经过了一些简单的resize)

    Returns:
        - dets: list,人脸定位信息(x1, y1, x2, y2)
        - rotation: int,旋转角度,正数代表逆时针偏离,负数代表顺时针偏离
        - landmark: list,人脸关键点信息
    """

    # face++人脸检测
    # input_image_bytes = CV2Bytes.cv2_byte(input_image, ".jpg")
    # face_num, face_rectangle, landmarks, headpose = megvii_face_detector(input_image_bytes)
    # print(face_rectangle)

    faces, landmarks = face_detect_mtcnn(input_image)
    face_num = len(faces)

    # 排除不合人脸数目要求(必须是1)的照片
    if face_num == 0 or face_num >= 2:
        if face_num == 0:
            status_id_ = "1101"
        else:
            status_id_ = "1102"
        raise IDError(f"人脸检测出错!检测出了{face_num}张人脸", face_num=face_num, status_id=status_id_)

    # 获得人脸定位坐标
    face_rectangle = []
    for iter, (x1, y1, x2, y2, _) in enumerate(faces):
        x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
        face_rectangle.append({'top': x1, 'left': y1, 'width': x2 - x1, 'height': y2 - y1})

    # 获取人脸定位坐标与关键点信息
    dets = face_rectangle[0]
    # landmark = landmarks[0]
    #
    # # 人脸旋转角度计算
    # rotation = eulerZ(landmark)
    # return dets, rotation, landmark
    return dets

@calTime
def image_matting(input_image, params):
    """
    本函数的功能为全局人像抠图。
    Args:
        - input_image: numpy.array(3 channels),用户原图

    Returns:
        - origin_png_image: numpy.array(4 channels), 抠好的图
    """

    print("抠图采用本地模型")
    origin_png_image = get_modnet_matting(input_image, sess=params["modnet"]["human_sess"])

    origin_png_image = hollowOutFix(origin_png_image)  # 抠图洞洞修补
    return origin_png_image


@calTime
def rotation_ajust(input_image, rotation, a, IS_DEBUG=False):
    """
    本函数的功能是根据旋转角对原图进行无损旋转,并返回结果图与附带信息。
    Args:
        - input_image: numpy.array(3 channels), 用户上传的原图(经过了一些简单的resize、美颜)
        - rotation: float, 人的五官偏离"端正"形态的旋转角
        - a: numpy.array(1 channel), matting图的matte
        - IS_DEBUG: DEBUG模式开关

    Returns:
        - result_jpg_image: numpy.array(3 channels), 原图旋转的结果图
        - result_png_image: numpy.array(4 channels), matting图旋转的结果图
        - L1: CLassObject, 根据旋转点连线所构造函数
        - L2: ClassObject, 根据旋转点连线所构造函数
        - dotL3: ClassObject, 一个特殊裁切点的坐标
        - clockwise: int, 表示照片是顺时针偏离还是逆时针偏离
        - drawed_dots_image: numpy.array(3 channels), 在result_jpg_image上标定了4个旋转点的结果图,用于DEBUG模式
    """

    # Step1. 数据准备
    rotation = -1 * rotation  # rotation为正数->原图顺时针偏离,为负数->逆时针偏离
    h, w = input_image.copy().shape[:2]

    # Step2. 无损旋转
    result_jpg_image, result_png_image, cos, sin = rotate_bound_4channels(input_image, a, rotation)

    # Step3. 附带信息计算
    nh, nw = result_jpg_image.shape[:2]  # 旋转后的新的长宽
    clockwise = -1 if rotation < 0 else 1  # clockwise代表时针,即1为顺时针,-1为逆时针
    # 如果逆时针偏离:
    if rotation < 0:
        p1 = Coordinate(0, int(w * sin))
        p2 = Coordinate(int(w * cos), 0)
        p3 = Coordinate(nw, int(h * cos))
        p4 = Coordinate(int(h * sin), nh)
        L1 = LinearFunction_TwoDots(p1, p4)
        L2 = LinearFunction_TwoDots(p4, p3)
        dotL3 = Coordinate(int(0.25 * p2.x + 0.75 * p3.x), int(0.25 * p2.y + 0.75 * p3.y))

    # 如果顺时针偏离:
    else:
        p1 = Coordinate(int(h * sin), 0)
        p2 = Coordinate(nw, int(w * sin))
        p3 = Coordinate(int(w * cos), nh)
        p4 = Coordinate(0, int(h * cos))
        L1 = LinearFunction_TwoDots(p4, p3)
        L2 = LinearFunction_TwoDots(p3, p2)
        dotL3 = Coordinate(int(0.75 * p4.x + 0.25 * p1.x), int(0.75 * p4.y + 0.25 * p1.y))

    # Step4. 根据附带信息进行图像绘制(4个旋转点),便于DEBUG模式验证
    drawed_dots_image = draw_picture_dots(result_jpg_image, [(p1.x, p1.y), (p2.x, p2.y), (p3.x, p3.y),
                                                             (p4.x, p4.y), (dotL3.x, dotL3.y)])
    if IS_DEBUG:
        testImages.append(["drawed_dots_image", drawed_dots_image])

    return result_jpg_image, result_png_image, L1, L2, dotL3, clockwise, drawed_dots_image


@calTime
def face_number_detection_mtcnn(input_image):
    """
    本函数的功能是对旋转矫正的结果图进行基于MTCNN模型的人脸检测。
    Args:
        - input_image: numpy.array(3 channels), 旋转矫正(rotation_adjust)的3通道结果图

    Returns:
        - faces: list, 人脸检测的结果,包含人脸位置信息
    """
    # 如果图像的长或宽>1500px,则对图像进行1/2的resize再做MTCNN人脸检测,以加快处理速度
    if max(input_image.shape[0], input_image.shape[1]) >= 1500:
        input_image_resize = cv2.resize(input_image,
                                        (input_image.shape[1] // 2, input_image.shape[0] // 2),
                                        interpolation=cv2.INTER_AREA)
        faces, _ = face_detect_mtcnn(input_image_resize, filter=True)  # MTCNN人脸检测
        # 如果缩放后图像的MTCNN人脸数目检测结果等于1->两次人脸检测结果没有偏差,则对定位数据x2
        if len(faces) == 1:
            for item, param in enumerate(faces[0]):
                faces[0][item] = param * 2
        # 如果两次人脸检测结果有偏差,则默认缩放后图像的MTCNN检测存在误差,则将原图输入再做一次MTCNN(保险措施)
        else:
            faces, _ = face_detect_mtcnn(input_image, filter=True)
    # 如果图像的长或宽<1500px,则直接进行MTCNN检测
    else:
        faces, _ = face_detect_mtcnn(input_image, filter=True)

    return faces


@calTime
def cutting_rect_pan(x1, y1, x2, y2, width, height, L1, L2, L3, clockwise, standard_size):
    """
    本函数的功能是对旋转矫正结果图的裁剪框进行修正 ———— 解决"旋转三角形"现象。
    Args:
        - x1: int, 裁剪框左上角的横坐标
        - y1: int, 裁剪框左上角的纵坐标
        - x2: int, 裁剪框右下角的横坐标
        - y2: int, 裁剪框右下角的纵坐标
        - width: int, 待裁剪图的宽度
        - height:int, 待裁剪图的高度
        - L1: CLassObject, 根据旋转点连线所构造函数
        - L2: CLassObject, 根据旋转点连线所构造函数
        - L3: ClassObject, 一个特殊裁切点的坐标
        - clockwise: int, 旋转时针状态
        - standard_size: tuple, 标准照的尺寸

    Returns:
        - x1: int, 新的裁剪框左上角的横坐标
        - y1: int, 新的裁剪框左上角的纵坐标
        - x2: int, 新的裁剪框右下角的横坐标
        - y2: int, 新的裁剪框右下角的纵坐标
        - x_bias: int, 裁剪框横坐标方向上的计算偏置量
        - y_bias: int, 裁剪框纵坐标方向上的计算偏置量
    """
    # 用于计算的裁剪框坐标x1_cal,x2_cal,y1_cal,y2_cal(如果裁剪框超出了图像范围,则缩小直至在范围内)
    x1_std = x1 if x1 > 0 else 0
    x2_std = x2 if x2 < width else width
    # y1_std = y1 if y1 > 0 else 0
    y2_std = y2 if y2 < height else height

    # 初始化x和y的计算偏置项x_bias和y_bias
    x_bias = 0
    y_bias = 0

    # 如果顺时针偏转
    if clockwise == 1:
        if y2 > L1.forward_x(x1_std):
            y_bias = int(-(y2_std - L1.forward_x(x1_std)))
        if y2 > L2.forward_x(x2_std):
            x_bias = int(-(x2_std - L2.forward_y(y2_std)))
        x2 = x2_std + x_bias
        if x1 < L3.x:
            x1 = L3.x
    # 如果逆时针偏转
    else:
        if y2 > L1.forward_x(x1_std):
            x_bias = int(L1.forward_y(y2_std) - x1_std)
        if y2 > L2.forward_x(x2_std):
            y_bias = int(-(y2_std - L2.forward_x(x2_std)))
        x1 = x1_std + x_bias
        if x2 > L3.x:
            x2 = L3.x

    # 计算裁剪框的y的变化
    y2 = int(y2_std + y_bias)
    new_cut_width = x2 - x1
    new_cut_height = int(new_cut_width / standard_size[1] * standard_size[0])
    y1 = y2 - new_cut_height

    return x1, y1, x2, y2, x_bias, y_bias


@calTime
def idphoto_cutting(faces, head_measure_ratio, standard_size, head_height_ratio, origin_png_image, origin_png_image_pre,
                    rotation_params, align=False, IS_DEBUG=False, top_distance_max=0.12, top_distance_min=0.10):
    """
    本函数的功能为进行证件照的自适应裁剪,自适应依据Setting.json的控制参数,以及输入图像的自身情况。
    Args:
        - faces: list, 人脸位置信息
        - head_measure_ratio: float, 人脸面积与全图面积的期望比值
        - standard_size: tuple, 标准照尺寸, 如(413, 295)
        - head_height_ratio: float, 人脸中心处在全图高度的比例期望值
        - origin_png_image: numpy.array(4 channels), 经过一系列转换后的用户输入图
        - origin_png_image_pre:numpy.array(4 channels),经过一系列转换(但没有做旋转矫正)的用户输入图
        - rotation_params:旋转参数字典
            - L1: classObject, 来自rotation_ajust的L1线性函数
            - L2: classObject, 来自rotation_ajust的L2线性函数
            - L3: classObject, 来自rotation_ajust的dotL3点
            - clockwise: int, (顺/逆)时针偏差
            - drawed_image: numpy.array, 红点标定4个旋转点的图像
        - align: bool, 是否图像做过旋转矫正
        - IS_DEBUG: DEBUG模式开关
        - top_distance_max: float, 头距离顶部的最大比例
        - top_distance_min: float, 头距离顶部的最小比例

    Returns:
        - result_image_hd: numpy.array(4 channels), 高清照
        - result_image_standard: numpy.array(4 channels), 标准照
        - clothing_params: json, 换装配置参数,便于后续换装功能的使用

    """
    # Step0. 旋转参数准备
    L1 = rotation_params["L1"]
    L2 = rotation_params["L2"]
    L3 = rotation_params["L3"]
    clockwise = rotation_params["clockwise"]
    drawed_image = rotation_params["drawed_image"]

    # Step1. 准备人脸参数
    face_rect = faces[0]
    x, y = face_rect[0], face_rect[1]
    w, h = face_rect[2] - x + 1, face_rect[3] - y + 1
    height, width = origin_png_image.shape[:2]
    width_height_ratio = standard_size[0] / standard_size[1]  # 高宽比

    # Step2. 计算高级参数
    face_center = (x + w / 2, y + h / 2)  # 面部中心坐标
    face_measure = w * h  # 面部面积
    crop_measure = face_measure / head_measure_ratio  # 裁剪框面积:为面部面积的5倍
    resize_ratio = crop_measure / (standard_size[0] * standard_size[1])  # 裁剪框缩放率
    resize_ratio_single = math.sqrt(resize_ratio)  # 长和宽的缩放率(resize_ratio的开方)
    crop_size = (int(standard_size[0] * resize_ratio_single),
                 int(standard_size[1] * resize_ratio_single))  # 裁剪框大小

    # 裁剪框的定位信息
    x1 = int(face_center[0] - crop_size[1] / 2)
    y1 = int(face_center[1] - crop_size[0] * head_height_ratio)
    y2 = y1 + crop_size[0]
    x2 = x1 + crop_size[1]

    # Step3. 对于旋转矫正图片的裁切处理
    # if align:
    #     y_top_pre, _, _, _ = get_box_pro(origin_png_image.astype(np.uint8), model=2,
    #                                      correction_factor=0)  # 获取matting结果图的顶距
    #     # 裁剪参数重新计算,目标是以最小的图像损失来消除"旋转三角形"
    #     x1, y1, x2, y2, x_bias, y_bias = cutting_rect_pan(x1, y1, x2, y2, width, height, L1, L2, L3, clockwise,
    #                                                       standard_size)
    #     # 这里设定一个拒绝判定条件,如果裁剪框切进了人脸检测框的话,就不进行旋转
    #     if y1 > y_top_pre:
    #         y2 = y2 - (y1 - y_top_pre)
    #         y1 = y_top_pre
    #         # 如何遇到裁剪到人脸的情况,则转为不旋转裁切
    #     if x1 > x or x2 < (x + w) or y1 > y or y2 < (y + h):
    #         return idphoto_cutting(faces, head_measure_ratio, standard_size, head_height_ratio, origin_png_image_pre,
    #                                origin_png_image_pre, rotation_params, align=False, IS_DEBUG=False)
    #
    #     if y_bias != 0:
    #         origin_png_image = origin_png_image[:y2, :]
    #     if x_bias > 0:  # 逆时针
    #         origin_png_image = origin_png_image[:, x1:]
    #         if drawed_image is not None and IS_DEBUG:
    #             drawed_x = x1
    #         x = x - x1
    #         x2 = x2 - x1
    #         x1 = 0
    #     else:  # 顺时针
    #         origin_png_image = origin_png_image[:, :x2]
    #
    #     if drawed_image is not None and IS_DEBUG:
    #         drawed_x = drawed_x if x_bias > 0 else 0
    #         drawed_image = draw_picture_dots(drawed_image, [(x1 + drawed_x, y1), (x1 + drawed_x, y2),
    #                                                         (x2 + drawed_x, y1), (x2 + drawed_x, y2)],
    #                                          pen_color=(255, 0, 0))
    #         testImages.append(["drawed_image", drawed_image])

    # Step4. 对照片的第一轮裁剪
    cut_image = IDphotos_cut(x1, y1, x2, y2, origin_png_image)
    cut_image = cv2.resize(cut_image, (crop_size[1], crop_size[0]))
    y_top, y_bottom, x_left, x_right = get_box_pro(cut_image.astype(np.uint8), model=2,
                                                   correction_factor=0)  # 得到cut_image中人像的上下左右距离信息
    if IS_DEBUG:
        testImages.append(["firstCut", cut_image])

    # Step5. 判定cut_image中的人像是否处于合理的位置,若不合理,则处理数据以便之后调整位置
    # 检测人像与裁剪框左边或右边是否存在空隙
    if x_left > 0 or x_right > 0:
        status_left_right = 1
        cut_value_top = int(((x_left + x_right) * width_height_ratio) / 2)  # 减去左右,为了保持比例,上下也要相应减少cut_value_top
    else:
        status_left_right = 0
        cut_value_top = 0

    """
        检测人头顶与照片的顶部是否在合适的距离内:
        - status==0: 距离合适, 无需移动
        - status=1: 距离过大, 人像应向上移动
        - status=2: 距离过小, 人像应向下移动
    """
    status_top, move_value = detect_distance(y_top - cut_value_top, crop_size[0], max=top_distance_max,
                                             min=top_distance_min)

    # Step6. 对照片的第二轮裁剪
    if status_left_right == 0 and status_top == 0:
        result_image = cut_image
    else:
        result_image = IDphotos_cut(x1 + x_left,
                                    y1 + cut_value_top + status_top * move_value,
                                    x2 - x_right,
                                    y2 - cut_value_top + status_top * move_value,
                                    origin_png_image)
    if IS_DEBUG:
        testImages.append(["result_image_pre", result_image])

    # 换装参数准备
    relative_x = x - (x1 + x_left)
    relative_y = y - (y1 + cut_value_top + status_top * move_value)

    # Step7. 当照片底部存在空隙时,下拉至底部
    result_image, y_high = move(result_image.astype(np.uint8))
    relative_y = relative_y + y_high  # 更新换装参数

    # cv2.imwrite("./temp_image.png", result_image)

    # Step8. 标准照与高清照转换
    result_image_standard = standard_photo_resize(result_image, standard_size)
    result_image_hd, resize_ratio_max = resize_image_by_min(result_image, esp=max(600, standard_size[1]))

    # Step9. 参数准备-为换装服务
    clothing_params = {
        "relative_x": relative_x * resize_ratio_max,
        "relative_y": relative_y * resize_ratio_max,
        "w": w * resize_ratio_max,
        "h": h * resize_ratio_max
    }

    return result_image_hd, result_image_standard, clothing_params


@calTime
def debug_mode_process(testImages):
    for item, (text, imageItem) in enumerate(testImages):
        channel = imageItem.shape[2]
        (height, width) = imageItem.shape[:2]
        if channel == 4:
            imageItem = add_background(imageItem, bgr=(255, 255, 255))
            imageItem = np.uint8(imageItem)
        if item == 0:
            testHeight = height
            result_image_test = imageItem
            result_image_test = cv2.putText(result_image_test, text, (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1.0,
                                            (200, 100, 100), 3)
        else:
            imageItem = cv2.resize(imageItem, (int(width * testHeight / height), testHeight))
            imageItem = cv2.putText(imageItem, text, (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1.0, (200, 100, 100),
                                    3)
            result_image_test = cv2.hconcat([result_image_test, imageItem])
        if item == len(testImages) - 1:
            return result_image_test


@calTime("主函数")
def IDphotos_create(input_image,
                    mode="ID",
                    size=(413, 295),
                    head_measure_ratio=0.2,
                    head_height_ratio=0.45,
                    align=False,
                    beauty=True,
                    fd68=None,
                    human_sess=None,
                    IS_DEBUG=False,
                    top_distance_max=0.12,
                    top_distance_min=0.10):
    """
    证件照制作主函数
    Args:
        input_image: 输入图像矩阵
        size: (h, w)
        head_measure_ratio: 头部占比?
        head_height_ratio: 头部高度占比?
        align: 是否进行人脸矫正(roll),默认为True(是)
        fd68: 人脸68关键点检测类,详情参见hycv.FaceDetection68.faceDetection68
        human_sess: 人像抠图模型类,由onnx载入(不与下面两个参数连用)
        oss_image_name: 阿里云api需要的参数,实际上是上传到oss的路径
        user: 阿里云api的accessKey配置对象
        top_distance_max: float, 头距离顶部的最大比例
        top_distance_min: float, 头距离顶部的最小比例
    Returns:
        result_image(高清版), result_image(普清版), api请求日志,
    排版照参数(list),排版照是否旋转参数,照片尺寸(x, y)
        在函数不出错的情况下,函数会因为一些原因主动抛出异常:
        1. 无人脸(或者只有半张,dlib无法检测出来),抛出IDError异常,内部参数face_num为0
        2. 人脸数量超过1,抛出IDError异常,内部参数face_num为2
        3. 抠图api请求失败,抛出IDError异常,内部参数face_num为-1
    """

    # Step0. 数据准备/图像预处理
    matting_params = {"modnet": {"human_sess": human_sess}}
    rotation_params = {"L1": None, "L2": None, "L3": None, "clockwise": None, "drawed_image": None}
    input_image = resize_image_esp(input_image, 2000)  # 将输入图片resize到最大边长为2000

    # Step1. 人脸检测
    # dets, rotation, landmark = face_number_and_angle_detection(input_image)
    # dets = face_number_and_angle_detection(input_image)

    # Step2. 美颜
    # if beauty:
    #     input_image = makeBeautiful(input_image, landmark, 2, 2, 5, 4)

    # Step3. 抠图
    origin_png_image = image_matting(input_image, matting_params)
    if mode == "只换底":
        return origin_png_image, origin_png_image, None, None, None, None, None, None, 1

    origin_png_image_pre = origin_png_image.copy()  # 备份一下现在抠图结果图,之后在iphoto_cutting函数有用

    # Step4. 旋转矫正
    # 如果旋转角不大于2, 则不做旋转
    # if abs(rotation) <= 2:
    #     align = False
    # # 否则,进行旋转矫正
    # if align:
    #     input_image_candidate, origin_png_image_candidate, L1, L2, L3, clockwise, drawed_image \
    #         = rotation_ajust(input_image, rotation, cv2.split(origin_png_image)[-1], IS_DEBUG=IS_DEBUG)  # 图像旋转
    #
    #     origin_png_image_pre = origin_png_image.copy()
    #     input_image = input_image_candidate.copy()
    #     origin_png_image = origin_png_image_candidate.copy()
    #
    #     rotation_params["L1"] = L1
    #     rotation_params["L2"] = L2
    #     rotation_params["L3"] = L3
    #     rotation_params["clockwise"] = clockwise
    #     rotation_params["drawed_image"] = drawed_image

    # Step5. MTCNN人脸检测
    faces = face_number_detection_mtcnn(input_image)

    # Step6. 证件照自适应裁剪
    face_num = len(faces)
    # 报错MTCNN检测结果不等于1的图片
    if face_num != 1:
        return None, None, None, None, None, None, None, None, 0
    # 符合条件的进入下一环
    else:
        result_image_hd, result_image_standard, clothing_params = \
            idphoto_cutting(faces, head_measure_ratio, size, head_height_ratio, origin_png_image,
                            origin_png_image_pre, rotation_params, align=align, IS_DEBUG=IS_DEBUG,
                            top_distance_max=top_distance_max, top_distance_min=top_distance_min)

    # Step7. 排版照参数获取
    typography_arr, typography_rotate = generate_layout_photo(input_height=size[0], input_width=size[1])

    return result_image_hd, result_image_standard, typography_arr, typography_rotate, \
           clothing_params["relative_x"], clothing_params["relative_y"], clothing_params["w"], clothing_params["h"], 1


if __name__ == "__main__":
    HY_HUMAN_MATTING_WEIGHTS_PATH = "./hivision_modnet.onnx"
    sess = onnxruntime.InferenceSession(HY_HUMAN_MATTING_WEIGHTS_PATH)

    input_image = cv2.imread("test.jpg")

    result_image_hd, result_image_standard, typography_arr, typography_rotate, \
    _, _, _, _, _ = IDphotos_create(input_image,
                                               size=(413, 295),
                                               head_measure_ratio=0.2,
                                               head_height_ratio=0.45,
                                               align=True,
                                               beauty=True,
                                               fd68=None,
                                               human_sess=sess,
                                               oss_image_name="test_tmping.jpg",
                                               user=None,
                                               IS_DEBUG=False,
                                               top_distance_max=0.12,
                                               top_distance_min=0.10)
    cv2.imwrite("result_image_hd.png", result_image_hd)