File size: 14,170 Bytes
d86aa1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
import cv2
import os
import onnxruntime
from .mtcnn_onnx.detector import detect_faces
from .tensor2numpy import *
from PIL import Image
import requests
from os.path import exists


def download_img(img_url, base_dir):
    print("Downloading Onnx Model in:", img_url)
    r = requests.get(img_url, stream=True)
    filename = img_url.split("/")[-1]
    # print(r.status_code) # 返回状态码
    if r.status_code == 200:
        open(f'{base_dir}/{filename}', 'wb').write(r.content) # 将内容写入图片
        print(f"Download Finshed -- {filename}")
    del r

class BBox(object):
    # bbox is a list of [left, right, top, bottom]
    def __init__(self, bbox):
        self.left = bbox[0]
        self.right = bbox[1]
        self.top = bbox[2]
        self.bottom = bbox[3]
        self.x = bbox[0]
        self.y = bbox[2]
        self.w = bbox[1] - bbox[0]
        self.h = bbox[3] - bbox[2]

    # scale to [0,1]
    def projectLandmark(self, landmark):
        landmark_= np.asarray(np.zeros(landmark.shape))
        for i, point in enumerate(landmark):
            landmark_[i] = ((point[0]-self.x)/self.w, (point[1]-self.y)/self.h)
        return landmark_

    # landmark of (5L, 2L) from [0,1] to real range
    def reprojectLandmark(self, landmark):
        landmark_= np.asarray(np.zeros(landmark.shape))
        for i, point in enumerate(landmark):
            x = point[0] * self.w + self.x
            y = point[1] * self.h + self.y
            landmark_[i] = (x, y)
        return landmark_


def face_detect_mtcnn(input_image, color_key=None, filter=None):
    """
    Inputs:
    - input_image: OpenCV Numpy.array
    - color_key: 当color_key等于"RGB"时,将不进行转换操作
    - filter:当filter等于True时,将抛弃掉置信度小于0.98或人脸框面积小于3600的人脸
    return:
    - faces: 带有人脸信息的变量
    - landmarks: face alignment
    """
    if color_key != "RGB":
        input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)

    input_image = Image.fromarray(input_image)
    faces, landmarks = detect_faces(input_image)

    if filter:
        face_clean = []
        for face in faces:
            confidence = face[-1]
            x1 = face[0]
            y1 = face[1]
            x2 = face[2]
            y2 = face[3]
            w = x2 - x1 + 1
            h = y2 - y1 + 1
            measure = w * h
            if confidence >= 0.98 and measure > 3600:
                # 如果检测到的人脸置信度小于0.98或人脸框面积小于3600,则抛弃该人脸
                face_clean.append(face)
        faces = face_clean

    return faces, landmarks


def mtcnn_bbox(face, width, height):
    x1 = face[0]
    y1 = face[1]
    x2 = face[2]
    y2 = face[3]
    w = x2 - x1 + 1
    h = y2 - y1 + 1

    size = int(max([w, h]) * 1.1)
    cx = x1 + w // 2
    cy = y1 + h // 2
    x1 = cx - size // 2
    x2 = x1 + size
    y1 = cy - size // 2
    y2 = y1 + size

    dx = max(0, -x1)
    dy = max(0, -y1)
    x1 = max(0, x1)
    y1 = max(0, y1)

    edx = max(0, x2 - width)
    edy = max(0, y2 - height)
    x2 = min(width, x2)
    y2 = min(height, y2)

    return x1, x2, y1, y2, dx, dy, edx, edy


def mtcnn_cropped_face(face_box, image, width, height):
    x1, x2, y1, y2, dx, dy, edx, edy = mtcnn_bbox(face_box, width, height)
    new_bbox = list(map(int, [x1, x2, y1, y2]))
    new_bbox = BBox(new_bbox)
    cropped = image[new_bbox.top:new_bbox.bottom, new_bbox.left:new_bbox.right]
    if (dx > 0 or dy > 0 or edx > 0 or edy > 0):
        cropped = cv2.copyMakeBorder(cropped, int(dy), int(edy), int(dx), int(edx), cv2.BORDER_CONSTANT, 0)
    return cropped, new_bbox


def face_landmark_56(input_image, faces_box=None):
    basedir = os.path.dirname(os.path.realpath(__file__)).split("mtcnn.py")[0]
    mean = np.asarray([0.485, 0.456, 0.406])
    std = np.asarray([0.229, 0.224, 0.225])
    base_url = "https://linimages.oss-cn-beijing.aliyuncs.com/"

    if not exists(f"{basedir}/mtcnn_onnx/weights/landmark_detection_56_se_external.onnx"):
        # download onnx model
        download_img(img_url=base_url + "landmark_detection_56_se_external.onnx",
                     base_dir=f"{basedir}/mtcnn_onnx/weights")

    ort_session = onnxruntime.InferenceSession(f"{basedir}/mtcnn_onnx/weights/landmark_detection_56_se_external.onnx")
    out_size = 56

    height, width, _ = input_image.shape
    if faces_box is None:
        faces_box, _ = face_detect_mtcnn(input_image)

    if len(faces_box) == 0:
        print('NO face is detected!')
        return None
    else:
        landmarks = []
        for face_box in faces_box:
            cropped, new_bbox = mtcnn_cropped_face(face_box, input_image, width, height)
            cropped_face = cv2.resize(cropped, (out_size, out_size))

            test_face = NNormalize(cropped_face, mean=mean, std=std)
            test_face = NTo_Tensor(test_face)
            test_face = NUnsqueeze(test_face)

            ort_inputs = {ort_session.get_inputs()[0].name: test_face}
            ort_outs = ort_session.run(None, ort_inputs)

            landmark = ort_outs[0]

            landmark = landmark.reshape(-1, 2)
            landmark = new_bbox.reprojectLandmark(landmark)
            landmarks.append(landmark)

        return landmarks



REFERENCE_FACIAL_POINTS = [
    [30.29459953, 51.69630051],
    [65.53179932, 51.50139999],
    [48.02519989, 71.73660278],
    [33.54930115, 92.3655014],
    [62.72990036, 92.20410156]
]

DEFAULT_CROP_SIZE = (96, 112)


def _umeyama(src, dst, estimate_scale=True, scale=1.0):
    """Estimate N-D similarity transformation with or without scaling.
    Parameters
    ----------
    src : (M, N) array
        Source coordinates.
    dst : (M, N) array
        Destination coordinates.
    estimate_scale : bool
        Whether to estimate scaling factor.
    Returns
    -------
    T : (N + 1, N + 1)
        The homogeneous similarity transformation matrix. The matrix contains
        NaN values only if the problem is not well-conditioned.
    References
    ----------
    .. [1] "Least-squares estimation of transformation parameters between two
            point patterns", Shinji Umeyama, PAMI 1991, :DOI:`10.1109/34.88573`
    """

    num = src.shape[0]
    dim = src.shape[1]

    # Compute mean of src and dst.
    src_mean = src.mean(axis=0)
    dst_mean = dst.mean(axis=0)

    # Subtract mean from src and dst.
    src_demean = src - src_mean
    dst_demean = dst - dst_mean

    # Eq. (38).
    A = dst_demean.T @ src_demean / num

    # Eq. (39).
    d = np.ones((dim,), dtype=np.double)
    if np.linalg.det(A) < 0:
        d[dim - 1] = -1

    T = np.eye(dim + 1, dtype=np.double)

    U, S, V = np.linalg.svd(A)

    # Eq. (40) and (43).
    rank = np.linalg.matrix_rank(A)
    if rank == 0:
        return np.nan * T
    elif rank == dim - 1:
        if np.linalg.det(U) * np.linalg.det(V) > 0:
            T[:dim, :dim] = U @ V
        else:
            s = d[dim - 1]
            d[dim - 1] = -1
            T[:dim, :dim] = U @ np.diag(d) @ V
            d[dim - 1] = s
    else:
        T[:dim, :dim] = U @ np.diag(d) @ V

    if estimate_scale:
        # Eq. (41) and (42).
        scale = 1.0 / src_demean.var(axis=0).sum() * (S @ d)
    else:
        scale = scale

    T[:dim, dim] = dst_mean - scale * (T[:dim, :dim] @ src_mean.T)
    T[:dim, :dim] *= scale

    return T, scale


class FaceWarpException(Exception):
    def __str__(self):
        return 'In File {}:{}'.format(
            __file__, super.__str__(self))


def get_reference_facial_points_5(output_size=None,
                                inner_padding_factor=0.0,
                                outer_padding=(0, 0),
                                default_square=False):
    tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
    tmp_crop_size = np.array(DEFAULT_CROP_SIZE)

    # 0) make the inner region a square
    if default_square:
        size_diff = max(tmp_crop_size) - tmp_crop_size
        tmp_5pts += size_diff / 2
        tmp_crop_size += size_diff

    if (output_size and
            output_size[0] == tmp_crop_size[0] and
            output_size[1] == tmp_crop_size[1]):
        print('output_size == DEFAULT_CROP_SIZE {}: return default reference points'.format(tmp_crop_size))
        return tmp_5pts

    if (inner_padding_factor == 0 and
            outer_padding == (0, 0)):
        if output_size is None:
            print('No paddings to do: return default reference points')
            return tmp_5pts
        else:
            raise FaceWarpException(
                'No paddings to do, output_size must be None or {}'.format(tmp_crop_size))

    # check output size
    if not (0 <= inner_padding_factor <= 1.0):
        raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')

    if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0)
            and output_size is None):
        output_size = tmp_crop_size * \
                      (1 + inner_padding_factor * 2).astype(np.int32)
        output_size += np.array(outer_padding)
        print('              deduced from paddings, output_size = ', output_size)

    if not (outer_padding[0] < output_size[0]
            and outer_padding[1] < output_size[1]):
        raise FaceWarpException('Not (outer_padding[0] < output_size[0]'
                                'and outer_padding[1] < output_size[1])')

    # 1) pad the inner region according inner_padding_factor
    # print('---> STEP1: pad the inner region according inner_padding_factor')
    if inner_padding_factor > 0:
        size_diff = tmp_crop_size * inner_padding_factor * 2
        tmp_5pts += size_diff / 2
        tmp_crop_size += np.round(size_diff).astype(np.int32)

    # print('              crop_size = ', tmp_crop_size)
    # print('              reference_5pts = ', tmp_5pts)

    # 2) resize the padded inner region
    # print('---> STEP2: resize the padded inner region')
    size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
    # print('              crop_size = ', tmp_crop_size)
    # print('              size_bf_outer_pad = ', size_bf_outer_pad)

    if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
        raise FaceWarpException('Must have (output_size - outer_padding)'
                                '= some_scale * (crop_size * (1.0 + inner_padding_factor)')

    scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
    # print('              resize scale_factor = ', scale_factor)
    tmp_5pts = tmp_5pts * scale_factor
    #    size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
    #    tmp_5pts = tmp_5pts + size_diff / 2
    tmp_crop_size = size_bf_outer_pad
    # print('              crop_size = ', tmp_crop_size)
    # print('              reference_5pts = ', tmp_5pts)

    # 3) add outer_padding to make output_size
    reference_5point = tmp_5pts + np.array(outer_padding)
    tmp_crop_size = output_size
    # print('---> STEP3: add outer_padding to make output_size')
    # print('              crop_size = ', tmp_crop_size)
    # print('              reference_5pts = ', tmp_5pts)
    #
    # print('===> end get_reference_facial_points\n')

    return reference_5point


def get_affine_transform_matrix(src_pts, dst_pts):
    tfm = np.float32([[1, 0, 0], [0, 1, 0]])
    n_pts = src_pts.shape[0]
    ones = np.ones((n_pts, 1), src_pts.dtype)
    src_pts_ = np.hstack([src_pts, ones])
    dst_pts_ = np.hstack([dst_pts, ones])

    A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)

    if rank == 3:
        tfm = np.float32([
            [A[0, 0], A[1, 0], A[2, 0]],
            [A[0, 1], A[1, 1], A[2, 1]]
        ])
    elif rank == 2:
        tfm = np.float32([
            [A[0, 0], A[1, 0], 0],
            [A[0, 1], A[1, 1], 0]
        ])

    return tfm


def warp_and_crop_face(src_img,
                       facial_pts,
                       reference_pts=None,
                       crop_size=(96, 112),
                       align_type='smilarity'): #smilarity cv2_affine affine
    if reference_pts is None:
        if crop_size[0] == 96 and crop_size[1] == 112:
            reference_pts = REFERENCE_FACIAL_POINTS
        else:
            default_square = False
            inner_padding_factor = 0
            outer_padding = (0, 0)
            output_size = crop_size

            reference_pts = get_reference_facial_points_5(output_size,
                                                        inner_padding_factor,
                                                        outer_padding,
                                                        default_square)

    ref_pts = np.float32(reference_pts)
    ref_pts_shp = ref_pts.shape
    if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
        raise FaceWarpException(
            'reference_pts.shape must be (K,2) or (2,K) and K>2')

    if ref_pts_shp[0] == 2:
        ref_pts = ref_pts.T

    src_pts = np.float32(facial_pts)
    src_pts_shp = src_pts.shape
    if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
        raise FaceWarpException(
            'facial_pts.shape must be (K,2) or (2,K) and K>2')

    if src_pts_shp[0] == 2:
        src_pts = src_pts.T

    if src_pts.shape != ref_pts.shape:
        raise FaceWarpException(
            'facial_pts and reference_pts must have the same shape')

    if align_type == 'cv2_affine':
        tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
        tfm_inv = cv2.getAffineTransform(ref_pts[0:3], src_pts[0:3])
    elif align_type == 'affine':
        tfm = get_affine_transform_matrix(src_pts, ref_pts)
        tfm_inv = get_affine_transform_matrix(ref_pts, src_pts)
    else:
        params, scale = _umeyama(src_pts, ref_pts)
        tfm = params[:2, :]

        params, _ = _umeyama(ref_pts, src_pts, False, scale=1.0/scale)
        tfm_inv = params[:2, :]

    face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]), flags=3)

    return face_img, tfm_inv


if __name__ == "__main__":
    image = cv2.imread("/home/parallels/Desktop/IDPhotos/input_image/03.jpg")
    face_detect_mtcnn(image)