File size: 17,483 Bytes
d86aa1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import cv2
import math
from ..utils import get_box_pro
from ..face_tools import face_detect_mtcnn
from ..vision import IDphotos_cut, detect_distance, resize_image_esp, draw_picture_dots
from ..matting_tools import get_modnet_matting
from .move_image import move
from src.hivisionai.hyTrain.APIs import aliyun_face_detect_api
import numpy as np
import json


def get_max(height, width, d1, d2, d3, d4, rotation_flag):
    if rotation_flag:
        height1 = height
        height2 = height - int(d1.y) # d2
        height3 = int(d4.y) # d3
        height4 = int(d4.y) - int(d1.x)

        width1 = width
        width2 = width - int(d3.x)
        width3 = int(d2.x)
        width4 = int(d2.x) - int(d3.x)

    else:
        height1 = height
        height2 = height - int(d2.y)
        height3 = int(d3.y)
        height4 = int(d3.y) - int(d2.y)

        width1 = width
        width2 = width - int(d1.x)
        width3 = int(d4.x)
        width4 = int(d4.x) - int(d1.x)

    height_list = [height1, height2, height3, height4]
    width_list = [width1, width2, width3, width4]

    background_height = max(height_list)
    status_height = height_list.index(background_height)

    background_width = max(width_list)
    status_width = width_list.index(background_width)

    height_change = 0
    width_change = 0
    height_change2 = 0
    width_change2 = 0
    if status_height == 1 or status_height == 3:
        if rotation_flag:
            height_change = abs(d1.y)
            height_change2 = d1.y
        else:
            height_change = abs(d2.y)
            height_change2 = d2.y

    if status_width == 1 or status_width == 3:
        if rotation_flag:
            width_change = abs(d3.x)
            width_change2 = d3.x
        else:
            width_change = abs(d1.x)
            width_change2 = d1.x

    return background_height, status_height, background_width, status_width, height_change, width_change,\
           height_change2, width_change2

class LinearFunction_TwoDots(object):
    """
    通过两个坐标点构建线性函数
    """
    def __init__(self, dot1, dot2):
        self.d1 = dot1
        self.d2 = dot2
        self.k = (self.d2.y - self.d1.y) / (self.d2.x - self.d1.x)
        self.b = self.d2.y - self.k * self.d2.x

    def forward(self, input, mode="x"):
        if mode == "x":
            return self.k * input + self.b
        elif mode == "y":
            return (input - self.b) / self.k

    def forward_x(self, x):
        return self.k * x + self.b

    def forward_y(self, y):
        return (y - self.b) / self.k

class Coordinate(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y

    def __str__(self):
        return "({}, {})".format(self.x, self.y)

def IDphotos_create(input_image, size=(413, 295), head_measure_ratio=0.2, head_height_ratio=0.45,
                    checkpoint_path="checkpoint/ModNet1.0.onnx", align=True):
    """
    input_path: 输入图像路径
    output_path: 输出图像路径
    size: 裁剪尺寸,格式应该如(413,295),竖直距离在前,水平距离在后
    head_measure_ratio: 人头面积占照片面积的head_ratio
    head_height_ratio: 人头中心处于照片从上到下的head_height
    align: 是否进行人脸矫正
    """

    input_image = resize_image_esp(input_image, 2000)  # 将输入图片压缩到最大边长为2000
    # cv2.imwrite("./temp_input_image.jpg", input_image)
    origin_png_image = get_modnet_matting(input_image, checkpoint_path)
    # cv2.imwrite("./test_image/origin_png_image.png", origin_png_image)
    _, _, _, a = cv2.split(origin_png_image)
    width_length_ratio = size[0]/size[1]  # 长宽比
    rotation = aliyun_face_detect_api("./temp_input_image.jpg")

    # 如果旋转角过小,则不进行矫正
    if abs(rotation) < 0.025:
        align=False

    if align:
        print("开始align")
        if rotation > 0:
            rotation_flag = 0  # 逆时针旋转
        else:
            rotation_flag = 1  # 顺时针旋转
        width, height, channels = input_image.shape

        p_list = [(0, 0), (0, height), (width, 0), (width, height)]
        rotate_list = []
        rotate = cv2.getRotationMatrix2D((height * 0.5, width * 0.5), rotation, 0.75)
        for p in p_list:
            p_m = np.array([[p[1]], [p[0]], [1]])
            rotate_list.append(np.dot(rotate[:2], p_m))
        # print("旋转角的四个顶点", rotate_list)

        input_image = cv2.warpAffine(input_image, rotate, (height, width), flags=cv2.INTER_AREA)
        new_a = cv2.warpAffine(a, rotate, (height, width), flags=cv2.INTER_AREA)
        # cv2.imwrite("./test_image/rotation.jpg", input_image)

        # ===================== 开始人脸检测 ===================== #
        faces, _ = face_detect_mtcnn(input_image, filter=True)
        face_num = len(faces)
        print("检测到的人脸数目为:", len(faces))
        # ===================== 人脸检测结束 ===================== #

        if face_num == 1:
            face_rect = faces[0]
            x, y = face_rect[0], face_rect[1]
            w, h = face_rect[2] - x + 1, face_rect[3] - y + 1
        elif face_num == 0:
            print("无人脸,返回0!!!")
            return 0
        else:
            print("太多人脸,返回2!!!")
            return 2

        d1, d2, d3, d4 = rotate_list[0], rotate_list[1], rotate_list[2], rotate_list[3]
        d1 = Coordinate(int(d1[0]), int(d1[1]))
        d2 = Coordinate(int(d2[0]), int(d2[1]))
        d3 = Coordinate(int(d3[0]), int(d3[1]))
        d4 = Coordinate(int(d4[0]), int(d4[1]))
        print("d1:", d1)
        print("d2:", d2)
        print("d3:", d3)
        print("d4:", d4)

        background_height, status_height, background_width, status_width,\
            height_change, width_change, height_change2, width_change2 = get_max(width, height, d1, d2, d3, d4, rotation_flag)

        print("background_height:", background_height)
        print("background_width:", background_width)
        print("status_height:", status_height)
        print("status_width:", status_width)
        print("height_change:", height_change)
        print("width_change:", width_change)

        background = np.zeros([background_height, background_width, 3])
        background_a = np.zeros([background_height, background_width])

        background[height_change:height_change+width, width_change:width_change+height] = input_image
        background_a[height_change:height_change+width, width_change:width_change+height] = new_a
        d1 = Coordinate(int(d1.x)-width_change2, int(d1.y)-height_change2)
        d2 = Coordinate(int(d2.x)-width_change2, int(d2.y)-height_change2)
        d3 = Coordinate(int(d3.x)-width_change2, int(d3.y)-height_change2)
        d4 = Coordinate(int(d4.x)-width_change2, int(d4.y)-height_change2)
        print("d1:", d1)
        print("d2:", d2)
        print("d3:", d3)
        print("d4:", d4)

        if rotation_flag:
            f13 = LinearFunction_TwoDots(d1, d3)
            d5 = Coordinate(max(0, d3.x), f13.forward_x(max(0, d3.x)))
            print("d5:", d5)

            f42 = LinearFunction_TwoDots(d4, d2)
            d7 = Coordinate(f42.forward_y(d5.y), d5.y)
            print("d7", d7)

            background_draw = draw_picture_dots(background, dots=[(d1.x, d1.y),
                                                                  (d2.x, d2.y),
                                                                  (d3.x, d3.y),
                                                                  (d4.x, d4.y),
                                                                  (d5.x, d5.y),
                                                                  (d7.x, d7.y)])
            # cv2.imwrite("./test_image/rotation_background.jpg", background_draw)

            if x<d5.x or x+w>d7.x:
                print("return 6")
                return 6

            background_output = background[:int(d5.y), int(d5.x):int(d7.x)]
            background_a_output = background_a[:int(d5.y), int(d5.x):int(d7.x)]
            # cv2.imwrite("./test_image/rotation_background_cut.jpg", background_output)

        else:
            f34 = LinearFunction_TwoDots(d3, d4)
            d5 = Coordinate(min(width_change+height, d4.x), f34.forward_x(min(width_change+height, d4.x)))
            print("d5:", d5)

            f13 = LinearFunction_TwoDots(d1, d3)
            d7 = Coordinate(f13.forward_y(d5.y), d5.y)
            print("d7", d7)

            if x<d7.x or x+w>d5.x:
                print("return 6")
                return 6

            background_draw = draw_picture_dots(background, dots=[(d1.x, d1.y),
                                                                  (d2.x, d2.y),
                                                                  (d3.x, d3.y),
                                                                  (d4.x, d4.y),
                                                                  (d5.x, d5.y),
                                                                  (d7.x, d7.y)])

            # cv2.imwrite("./test_image/rotation_background.jpg", background_draw)

            background_output = background[:int(d5.y), int(d7.x):int(d5.x)]
            background_a_output = background_a[:int(d5.y), int(d7.x):int(d5.x)]
            # cv2.imwrite("./test_image/rotation_background_cut.jpg", background_output)

        input_image = np.uint8(background_output)
        b, g, r = cv2.split(input_image)
        origin_png_image = cv2.merge((b, g, r, np.uint8(background_a_output)))

    # ===================== 开始人脸检测 ===================== #
    width, length = input_image.shape[0], input_image.shape[1]
    faces, _ = face_detect_mtcnn(input_image, filter=True)
    face_num = len(faces)
    print("检测到的人脸数目为:", len(faces))
    # ===================== 人脸检测结束 ===================== #

    if face_num == 1:

        face_rect = faces[0]
        x, y = face_rect[0], face_rect[1]
        w, h = face_rect[2] - x + 1, face_rect[3] - y + 1

        # x,y,w,h代表人脸框的左上角坐标和宽高

        # 检测头顶下方空隙,如果头顶下方空隙过小,则拒绝
        if y+h >= 0.85*width:
            # print("face bottom too short! y+h={} width={}".format(y+h, width))
            print("在人脸下方的空间太少,返回值3!!!")
            return 3

        # 第一次裁剪
        # 确定裁剪的基本参数
        face_center = (x+w/2, y+h/2)  # 面部中心坐标
        face_measure = w*h  # 面部面积
        crop_measure = face_measure/head_measure_ratio  # 裁剪框面积:为面部面积的5倍
        resize_ratio = crop_measure/(size[0]*size[1])  # 裁剪框缩放率(以输入尺寸为标准)
        resize_ratio_single = math.sqrt(resize_ratio)
        crop_size = (int(size[0]*resize_ratio_single), int(size[1]*resize_ratio_single))  # 裁剪框大小
        print("crop_size:", crop_size)

        # 裁剪规则:x1和y1为裁剪的起始坐标,x2和y2为裁剪的最终坐标
        # y的确定由人脸中心在照片的45%位置决定
        x1 = int(face_center[0]-crop_size[1]/2)
        y1 = int(face_center[1]-crop_size[0]*head_height_ratio)
        y2 = y1+crop_size[0]
        x2 = x1+crop_size[1]

        # 对原图进行抠图,得到透明图img
        print("开始进行抠图")
        # origin_png_image => 对原图的抠图结果
        # cut_image => 第一次裁剪后的图片
        # result_image => 第二次裁剪后的图片/输出图片
        # origin_png_image = get_human_matting(input_image, get_file_dir(checkpoint_path))

        cut_image = IDphotos_cut(x1, y1, x2, y2, origin_png_image)
        # cv2.imwrite("./temp.png", cut_image)
        # 对裁剪得到的图片temp_path,我们将image=temp_path resize为裁剪框大小,这样方便进行后续计算
        cut_image = cv2.resize(cut_image, (crop_size[1], crop_size[0]))
        y_top, y_bottom, x_left, x_right = get_box_pro(cut_image, model=2)  # 得到透明图中人像的上下左右距离信息
        print("y_top:{}, y_bottom:{}, x_left:{}, x_right:{}".format(y_top, y_bottom, x_left, x_right))

        # 判断左右是否有间隙
        if x_left > 0 or x_right > 0:
            # 左右有空隙, 我们需要减掉它
            print("左右有空隙!")
            status_left_right = 1
            cut_value_top = int(((x_left + x_right) * width_length_ratio) / 2)  # 减去左右,为了保持比例,上下也要相应减少cut_value_top
            print("cut_value_top:", cut_value_top)

        else:
            # 左右没有空隙, 则不管
            status_left_right = 0
            cut_value_top = 0
            print("cut_value_top:", cut_value_top)

        # 检测人头顶与照片的顶部是否在合适的距离内
        print("y_top:", y_top)
        status_top, move_value = detect_distance(y_top-int((x_left+x_right)*width_length_ratio/2), crop_size[0])
        # status=0 => 距离合适, 无需移动
        # status=1 => 距离过大, 人像应向上移动
        # status=2 => 距离过小, 人像应向下移动
        # move_value => 上下移动的距离
        print("status_top:", status_top)
        print("move_value:", move_value)

        # 开始第二次裁剪
        if status_top == 0:
        # 如果上下距离合适,则无需移动
            if status_left_right:
                # 如果左右有空隙,则需要用到cut_value_top
                result_image = IDphotos_cut(x1 + x_left,
                             y1 + cut_value_top,
                             x2 - x_right,
                             y2 - cut_value_top,
                             origin_png_image)

            else:
                # 如果左右没有空隙,那么则无需改动
                result_image = cut_image

        elif status_top == 1:
        # 如果头顶离照片顶部距离过大,需要人像向上移动,则需要用到move_value
            if status_left_right:
                # 左右存在距离,则需要cut_value_top
                result_image = IDphotos_cut(x1 + x_left,
                             y1 + cut_value_top + move_value,
                             x2 - x_right,
                             y2 - cut_value_top + move_value,
                             origin_png_image)
            else:
                # 左右不存在距离
                result_image = IDphotos_cut(x1 + x_left,
                             y1 + move_value,
                             x2 - x_right,
                             y2 + move_value,
                             origin_png_image)

        else:
            # 如果头顶离照片顶部距离过小,则需要人像向下移动,则需要用到move_value
            if status_left_right:
                # 左右存在距离,则需要cut_value_top
                result_image = IDphotos_cut(x1 + x_left,
                             y1 + cut_value_top - move_value,
                             x2 - x_right,
                             y2 - cut_value_top - move_value,
                             origin_png_image)
            else:
                # 左右不存在距离
                result_image = IDphotos_cut(x1 + x_left,
                             y1 - move_value,
                             x2 - x_right,
                             y2 - move_value,
                             origin_png_image)

        # 调节头顶位置————防止底部空一块儿
        result_image = move(result_image)

        # 高清保存
        # cv2.imwrite(output_path.replace(".png", "_HD.png"), result_image)

        # 普清保存
        result_image2 = cv2.resize(result_image, (size[1], size[0]), interpolation=cv2.INTER_AREA)
        # cv2.imwrite("./output_image.png", result_image)
        print("完成.返回1")
        return 1, result_image, result_image2

    elif face_num == 0:
        print("无人脸,返回0!!!")
        return 0
    else:
        print("太多人脸,返回2!!!")
        return 2


if __name__ == "__main__":
    with open("./Setting.json") as json_file:
        # file_list = get_filedir_filelist("./input_image")
        setting = json.load(json_file)
        filedir = "../IDPhotos/input_image/linzeyi.jpg"
        file_list = [filedir]
        for filedir in file_list:
            print(filedir)
            # try:
            status_id, result_image, result_image2 = IDphotos_create(cv2.imread(filedir),
                                    size=(setting["size_height"], setting["size_width"]),
                                    head_height_ratio=setting["head_height_ratio"],
                                    head_measure_ratio=setting["head_measure_ratio"],
                                    checkpoint_path=setting["checkpoint_path"],
                                    align=True)
            # cv2.imwrite("./result_image.png", result_image)

            if status_id == 1:
                print("处理完毕!")
            elif status_id == 0:
                print("没有人脸!请重新上传有人脸的照片.")
            elif status_id == 2:
                print("人脸不只一张!请重新上传单独人脸的照片.")
            elif status_id == 3:
                print("人头下方空隙不足!")
            elif status_id == 4:
                print("此照片不能制作该规格!")
            # except Exception as e:
            #     print(e)