Spaces:
Runtime error
Runtime error
File size: 16,473 Bytes
d86aa1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import cv2
from PIL import Image
import numpy as np
import functools
import time
def calTime(mark):
"""
一个输出函数时间的装饰器.
:param mark: str, 可选填, 如果填了就会在print开头加上mark标签。
"""
if isinstance(mark, str):
def decorater(func):
@functools.wraps(func)
def wrapper(*args, **kw):
start_time = time.time()
return_param = func(*args, **kw)
print("[Mark-{}] {} 函数花费的时间为 {:.2f}.".format(mark, func.__name__, time.time() - start_time))
return return_param
return wrapper
return decorater
else:
func = mark
@functools.wraps(func)
def wrapper(*args, **kw):
start_time = time.time()
return_param = func(*args, **kw)
print("{} 函数花费的时间为 {:.2f}.".format(func.__name__, time.time() - start_time))
return return_param
return wrapper
def ChangeImageDPI(input_path, output_path, dpi=300):
"""
改变输入图像的dpi.
input_path: 输入图像路径
output_path: 输出图像路径
dpi:打印分辨率
"""
image = Image.open(input_path)
image.save(output_path, dpi=(dpi, dpi))
# print(1)
print("Your Image's DPI have been changed. The last DPI = ({},{}) ".format(dpi,dpi))
def IDphotos_cut(x1, y1, x2, y2, img):
"""
在图片上进行滑动裁剪,输入输出为
输入:一张图片img,和裁剪框信息(x1,x2,y1,y2)
输出: 裁剪好的图片,然后裁剪框超出了图像范围,那么将用0矩阵补位
------------------------------------
x:裁剪框左上的横坐标
y:裁剪框左上的纵坐标
x2:裁剪框右下的横坐标
y2:裁剪框右下的纵坐标
crop_size:裁剪框大小
img:裁剪图像(numpy.array)
output_path:裁剪图片的输出路径
------------------------------------
"""
crop_size = (y2-y1, x2-x1)
"""
------------------------------------
temp_x_1:裁剪框左边超出图像部分
temp_y_1:裁剪框上边超出图像部分
temp_x_2:裁剪框右边超出图像部分
temp_y_2:裁剪框下边超出图像部分
------------------------------------
"""
temp_x_1 = 0
temp_y_1 = 0
temp_x_2 = 0
temp_y_2 = 0
if y1 < 0:
temp_y_1 = abs(y1)
y1 = 0
if y2 > img.shape[0]:
temp_y_2 = y2
y2 = img.shape[0]
temp_y_2 = temp_y_2 - y2
if x1 < 0:
temp_x_1 = abs(x1)
x1 = 0
if x2 > img.shape[1]:
temp_x_2 = x2
x2 = img.shape[1]
temp_x_2 = temp_x_2 - x2
# 生成一张全透明背景
print("crop_size:", crop_size)
background_bgr = np.full((crop_size[0], crop_size[1]), 255, dtype=np.uint8)
background_a = np.full((crop_size[0], crop_size[1]), 0, dtype=np.uint8)
background = cv2.merge((background_bgr, background_bgr, background_bgr, background_a))
background[temp_y_1: crop_size[0] - temp_y_2, temp_x_1: crop_size[1] - temp_x_2] = img[y1:y2, x1:x2]
return background
def resize_image_esp(input_image, esp=2000):
"""
输入:
input_path:numpy图片
esp:限制的最大边长
"""
# resize函数=>可以让原图压缩到最大边为esp的尺寸(不改变比例)
width = input_image.shape[0]
length = input_image.shape[1]
max_num = max(width, length)
if max_num > esp:
print("Image resizing...")
if width == max_num:
length = int((esp / width) * length)
width = esp
else:
width = int((esp / length) * width)
length = esp
print(length, width)
im_resize = cv2.resize(input_image, (length, width), interpolation=cv2.INTER_AREA)
return im_resize
else:
return input_image
def resize_image_by_min(input_image, esp=600):
"""
将图像缩放为最短边至少为esp的图像。
:param input_image: 输入图像(OpenCV矩阵)
:param esp: 缩放后的最短边长
:return: 缩放后的图像,缩放倍率
"""
height, width = input_image.shape[0], input_image.shape[1]
min_border = min(height, width)
if min_border < esp:
if height >= width:
new_width = esp
new_height = height * esp // width
else:
new_height = esp
new_width = width * esp // height
return cv2.resize(input_image, (new_width, new_height), interpolation=cv2.INTER_AREA), new_height / height
else:
return input_image, 1
def detect_distance(value, crop_heigh, max=0.06, min=0.04):
"""
检测人头顶与照片顶部的距离是否在适当范围内。
输入:与顶部的差值
输出:(status, move_value)
status=0 不动
status=1 人脸应向上移动(裁剪框向下移动)
status-2 人脸应向下移动(裁剪框向上移动)
---------------------------------------
value:头顶与照片顶部的距离·
crop_heigh: 裁剪框的高度
max: 距离的最大值
min: 距离的最小值
---------------------------------------
"""
value = value / crop_heigh # 头顶往上的像素占图像的比例
if min <= value <= max:
return 0, 0
elif value > max:
# 头顶往上的像素比例高于max
move_value = value - max
move_value = int(move_value * crop_heigh)
# print("上移{}".format(move_value))
return 1, move_value
else:
# 头顶往上的像素比例低于min
move_value = min - value
move_value = int(move_value * crop_heigh)
# print("下移{}".format(move_value))
return -1, move_value
def draw_picture_dots(image, dots, pen_size=10, pen_color=(0, 0, 255)):
"""
给一张照片上绘制点。
image: Opencv图像矩阵
dots: 一堆点,形如[(100,100),(150,100)]
pen_size: 画笔的大小
pen_color: 画笔的颜色
"""
if isinstance(dots, dict):
dots = [v for u, v in dots.items()]
image = image.copy()
for x, y in dots:
cv2.circle(image, (int(x), int(y)), pen_size, pen_color, -1)
return image
def draw_picture_rectangle(image, bbox, pen_size=2, pen_color=(0, 0, 255)):
image = image.copy()
x1 = int(bbox[0])
y1 = int(bbox[1])
x2 = int(bbox[2])
y2 = int(bbox[3])
cv2.rectangle(image, (x1,y1), (x2, y2), pen_color, pen_size)
return image
def generate_gradient(start_color, width, height, mode="updown"):
# 定义背景颜色
end_color = (255, 255, 255) # 白色
# 创建一个空白图像
r_out = np.zeros((height, width), dtype=int)
g_out = np.zeros((height, width), dtype=int)
b_out = np.zeros((height, width), dtype=int)
if mode == "updown":
# 生成上下渐变色
for y in range(height):
r = int((y / height) * end_color[0] + ((height - y) / height) * start_color[0])
g = int((y / height) * end_color[1] + ((height - y) / height) * start_color[1])
b = int((y / height) * end_color[2] + ((height - y) / height) * start_color[2])
r_out[y, :] = r
g_out[y, :] = g
b_out[y, :] = b
else:
# 生成中心渐变色
img = np.zeros((height, width, 3))
# 定义椭圆中心和半径
center = (width//2, height//2)
end_axies = max(height, width)
# 定义渐变色
end_color = (255, 255, 255)
# 绘制椭圆
for y in range(end_axies):
axes = (end_axies - y, end_axies - y)
r = int((y / end_axies) * end_color[0] + ((end_axies - y) / end_axies) * start_color[0])
g = int((y / end_axies) * end_color[1] + ((end_axies - y) / end_axies) * start_color[1])
b = int((y / end_axies) * end_color[2] + ((end_axies - y) / end_axies) * start_color[2])
cv2.ellipse(img, center, axes, 0, 0, 360, (b, g, r), -1)
b_out, g_out, r_out = cv2.split(np.uint64(img))
return r_out, g_out, b_out
def add_background(input_image, bgr=(0, 0, 0), mode="pure_color"):
"""
本函数的功能为为透明图像加上背景。
:param input_image: numpy.array(4 channels), 透明图像
:param bgr: tuple, 合成纯色底时的BGR值
:param new_background: numpy.array(3 channels),合成自定义图像底时的背景图
:return: output: 合成好的输出图像
"""
height, width = input_image.shape[0], input_image.shape[1]
b, g, r, a = cv2.split(input_image)
a_cal = a / 255
if mode == "pure_color":
# 纯色填充
b2 = np.full([height, width], bgr[0], dtype=int)
g2 = np.full([height, width], bgr[1], dtype=int)
r2 = np.full([height, width], bgr[2], dtype=int)
elif mode == "updown_gradient":
b2, g2, r2 = generate_gradient(bgr, width, height, mode="updown")
else:
b2, g2, r2 = generate_gradient(bgr, width, height, mode="center")
output = cv2.merge(((b - b2) * a_cal + b2, (g - g2) * a_cal + g2, (r - r2) * a_cal + r2))
return output
def rotate_bound(image, angle):
"""
一个旋转函数,输入一张图片和一个旋转角,可以实现不损失图像信息的旋转。
- image: numpy.array(3 channels)
- angle: 旋转角(度)
"""
(h, w) = image.shape[:2]
(cX, cY) = (w / 2, h / 2)
M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
nW = int((h * sin) + (w * cos))
nH = int((h * cos) + (w * sin))
M[0, 2] += (nW / 2) - cX
M[1, 2] += (nH / 2) - cY
return cv2.warpAffine(image, M, (nW, nH)), cos, sin
def rotate_bound_4channels(image, a, angle):
"""
【rotate_bound_4channels的4通道版本】
一个旋转函数,输入一张图片和一个旋转角,可以实现不损失图像信息的旋转。
Inputs:
- image: numpy.array(3 channels), 输入图像
- a: numpy.array(1 channels), 输入图像的A矩阵
- angle: 旋转角(度)
Returns:
- input_image: numpy.array(3 channels), 对image进行旋转后的图像
- result_image: numpy.array(4 channels), 旋转且透明的图像
- cos: float, 旋转角的余弦值
- sin: float, 旋转角的正弦值
"""
input_image, cos, sin = rotate_bound(image, angle)
new_a, _, _ = rotate_bound(a, angle) # 对做matte旋转,以便之后merge
b, g, r = cv2.split(input_image)
result_image = cv2.merge((b, g, r, new_a)) # 得到抠图结果图的无损旋转结果
return input_image, result_image, cos, sin
def cover_image(image, background, x, y, mode=1):
"""
mode = 1: directly cover
mode = 2: cv2.add
mode = 3: bgra cover
"""
image = image.copy()
background = background.copy()
height1, width1 = background.shape[0], background.shape[1]
height2, width2 = image.shape[0], image.shape[1]
wuqiong_bg_y = height1 + 1
wuqiong_bg_x = width1 + 1
wuqiong_img_y = height2 + 1
wuqiong_img_x = width2 + 1
def cover_mode(image, background, imgy1=0, imgy2=-1, imgx1=0, imgx2=-1, bgy1=0, bgy2=-1, bgx1=0, bgx2=-1, mode=1):
if mode == 1:
background[bgy1:bgy2, bgx1:bgx2] = image[imgy1:imgy2, imgx1:imgx2]
elif mode == 2:
background[bgy1:bgy2, bgx1:bgx2] = cv2.add(background[bgy1:bgy2, bgx1:bgx2], image[imgy1:imgy2, imgx1:imgx2])
elif mode == 3:
b, g, r, a = cv2.split(image[imgy1:imgy2, imgx1:imgx2])
b2, g2, r2, a2 = cv2.split(background[bgy1:bgy2, bgx1:bgx2])
background[bgy1:bgy2, bgx1:bgx2, 0] = b * (a / 255) + b2 * (1 - a / 255)
background[bgy1:bgy2, bgx1:bgx2, 1] = g * (a / 255) + g2 * (1 - a / 255)
background[bgy1:bgy2, bgx1:bgx2, 2] = r * (a / 255) + r2 * (1 - a / 255)
background[bgy1:bgy2, bgx1:bgx2, 3] = cv2.add(a, a2)
return background
if x >= 0 and y >= 0:
x2 = x + width2
y2 = y + height2
if x2 <= width1 and y2 <= height1:
background = cover_mode(image, background,0,wuqiong_img_y,0,wuqiong_img_x,y,y2,x,x2,mode)
elif x2 > width1 and y2 <= height1:
# background[y:y2, x:] = image[:, :width1 - x]
background = cover_mode(image, background, 0, wuqiong_img_y, 0, width1-x, y, y2, x, wuqiong_bg_x,mode)
elif x2 <= width1 and y2 > height1:
# background[y:, x:x2] = image[:height1 - y, :]
background = cover_mode(image, background, 0, height1-y, 0, wuqiong_img_x, y, wuqiong_bg_y, x, x2,mode)
else:
# background[y:, x:] = image[:height1 - y, :width1 - x]
background = cover_mode(image, background, 0, height1-y, 0, width1-x, y, wuqiong_bg_y, x, wuqiong_bg_x,mode)
elif x < 0 and y >= 0:
x2 = x + width2
y2 = y + height2
if x2 <= width1 and y2 <= height1:
# background[y:y2, :x + width2] = image[:, abs(x):]
background = cover_mode(image, background, 0, wuqiong_img_y, abs(x), wuqiong_img_x, y, y2, 0, x+width2,mode)
elif x2 > width1 and y2 <= height1:
background = cover_mode(image, background, 0, wuqiong_img_y, abs(x), width1+abs(x), y, y2, 0, wuqiong_bg_x,mode)
elif x2 <= 0:
pass
elif x2 <= width1 and y2 > height1:
background = cover_mode(image, background, 0, height1-y, abs(x), wuqiong_img_x, y, wuqiong_bg_y, 0, x2, mode)
else:
# background[y:, :] = image[:height1 - y, abs(x):width1 + abs(x)]
background = cover_mode(image, background, 0, height1-y, abs(x), width1+abs(x), y, wuqiong_bg_y, 0, wuqiong_bg_x,mode)
elif x >= 0 and y < 0:
x2 = x + width2
y2 = y + height2
if y2 <= 0:
pass
if x2 <= width1 and y2 <= height1:
# background[:y2, x:x2] = image[abs(y):, :]
background = cover_mode(image, background, abs(y), wuqiong_img_y, 0, wuqiong_img_x, 0, y2, x, x2,mode)
elif x2 > width1 and y2 <= height1:
# background[:y2, x:] = image[abs(y):, :width1 - x]
background = cover_mode(image, background, abs(y), wuqiong_img_y, 0, width1-x, 0, y2, x, wuqiong_bg_x,mode)
elif x2 <= width1 and y2 > height1:
# background[:, x:x2] = image[abs(y):height1 + abs(y), :]
background = cover_mode(image, background, abs(y), height1+abs(y), 0, wuqiong_img_x, 0, wuqiong_bg_y, x, x2,mode)
else:
# background[:, x:] = image[abs(y):height1 + abs(y), :width1 - abs(x)]
background = cover_mode(image, background, abs(y), height1+abs(y), 0, width1-abs(x), 0, wuqiong_bg_x, x, wuqiong_bg_x,mode)
else:
x2 = x + width2
y2 = y + height2
if y2 <= 0 or x2 <= 0:
pass
if x2 <= width1 and y2 <= height1:
# background[:y2, :x2] = image[abs(y):, abs(x):]
background = cover_mode(image, background, abs(y), wuqiong_img_y, abs(x), wuqiong_img_x, 0, y2, 0, x2,mode)
elif x2 > width1 and y2 <= height1:
# background[:y2, :] = image[abs(y):, abs(x):width1 + abs(x)]
background = cover_mode(image, background, abs(y), wuqiong_img_y, abs(x), width1+abs(x), 0, y2, 0, wuqiong_bg_x,mode)
elif x2 <= width1 and y2 > height1:
# background[:, :x2] = image[abs(y):height1 + abs(y), abs(x):]
background = cover_mode(image, background, abs(y), height1+abs(y), abs(x), wuqiong_img_x, 0, wuqiong_bg_y, 0, x2,mode)
else:
# background[:, :] = image[abs(y):height1 - abs(y), abs(x):width1 + abs(x)]
background = cover_mode(image, background, abs(y), height1-abs(y), abs(x), width1+abs(x), 0, wuqiong_bg_y, 0, wuqiong_bg_x,mode)
return background
def image2bgr(input_image):
if len(input_image.shape) == 2:
input_image = input_image[:, :, None]
if input_image.shape[2] == 1:
result_image = np.repeat(input_image, 3, axis=2)
elif input_image.shape[2] == 4:
result_image = input_image[:, :, 0:3]
else:
result_image = input_image
return result_image
if __name__ == "__main__":
image = cv2.imread("./03.png", -1)
result_image = add_background(image, bgr=(255, 255, 255))
cv2.imwrite("test.jpg", result_image) |