HivisionIDPhotos / hivisionai /hycv /idphotoTool /idphoto_change_cloth.py
mikesolar's picture
Upload folder using huggingface_hub
d86aa1d
import cv2
import numpy as np
from ..utils import get_box_pro, cut_BiggestAreas, locate_neck, get_cutbox_image
from .move_image import move
from ..vision import add_background, cover_image
from ..matting_tools import get_modnet_matting
from .neck_processing import transformationNeck
from .cuny_tools import checkSharpCorner, checkJaw, checkHairLOrR,\
checkLongHair, checkLongHair2, convert_black_array, find_black
test_image_path = "./supple_image/"
def change_cloth(input_image:np.array,
cloth_model,
CLOTH_WIDTH,
CLOTH_X,
CLOTH_WIDTH_CHANGE,
CLOTH_X_CHANGE,
CLOTH_Y,
neck_ratio=0.2,
space_adjust=None,
hair_front=True
):
# ============= 1. 得到头脖子图、纯头图、纯脖子图的相关信息 =============== #
# 1.1 获取原图input_image属性
input_height, input_width = input_image.shape[0], input_image.shape[1]
# print("input_height:", input_height)
# print("input_width", input_width)
b, g, r, input_a = cv2.split(input_image)
# 1.2 得到头脖子图headneck_image、纯头图head_image
input_image = add_background(input_image, bgr=(255, 255, 255))
headneck_image = get_modnet_matting(input_image, checkpoint_path="./checkpoint/huanying_headneck3.onnx")
head_image = get_modnet_matting(input_image, checkpoint_path="./checkpoint/huanying_head3.onnx")
# 1.3 得到优化后的脖子图neck_threshold_image
_, _, _, headneck_a = cv2.split(headneck_image)
_, _, _, head_a = cv2.split(head_image)
neck_a = cv2.subtract(headneck_a, head_a)
_, neck_threshold_a = cv2.threshold(neck_a, 180, 255, cv2.THRESH_BINARY)
neck_threshold_image = cut_BiggestAreas(cv2.merge(
(np.uint8(b), np.uint8(g), np.uint8(r), np.uint8(neck_threshold_a))))
# 1.4 得到优化后的头脖子图headneck_threshold_image
_, headneck_threshold_a = cv2.threshold(headneck_a, 180, 255, cv2.THRESH_BINARY)
headneck_threshold_image = cut_BiggestAreas(
cv2.merge((np.uint8(b), np.uint8(g), np.uint8(r), np.uint8(headneck_threshold_a))))
# 1.5 获取脖子图、头脖子图的A矩阵
_, _, _, neck_threshold_a2 = cv2.split(neck_threshold_image)
_, _, _, headneck_threshold_a2 = cv2.split(headneck_threshold_image)
# 1.6 获取头发的底部坐标信息,以及头的左右坐标信息
_, headneck_y_bottom, headneck_x_left, headneck_x_right = get_box_pro(headneck_threshold_image,
model=2, correction_factor=0)
headneck_y_bottom = input_height-headneck_y_bottom
headneck_x_right = input_width-headneck_x_right
# ============= 2. 得到原来的衣服的相关信息 =============== #
# 2.1 抠出原来衣服cloth_image_input
cloth_origin_image_a = cv2.subtract(np.uint8(input_a), np.uint8(headneck_a))
_, cloth_origin_image_a = cv2.threshold(cloth_origin_image_a, 180, 255, cv2.THRESH_BINARY)
cloth_image_input = cut_BiggestAreas(cv2.merge((np.uint8(b), np.uint8(g), np.uint8(r), np.uint8(cloth_origin_image_a))))
# 2.2 对cloth_image_input做裁剪(减去上面的大片透明区域)
cloth_image_input_top_y, _, _, _ = get_box_pro(cloth_image_input, model=2)
cloth_image_input_cut = cloth_image_input[cloth_image_input_top_y:, :]
# ============= 3.计算脖子的衔接点信息,为新服装拼接作准备 ===============#
# 3.1 得到裁剪透明区域后的脖子图neck_cut_image,以及它的坐标信息
neck_y_top, neck_y_bottom, neck_x_left, neck_x_right = get_box_pro(neck_threshold_image, model=2)
neck_cut_image = get_cutbox_image(neck_threshold_image)
neck_height = input_height - (neck_y_top + neck_y_bottom)
neck_width = input_width - (neck_x_right + neck_x_left)
# 3.2 对neck_cut_image做“尖尖”检测,得到较低的“尖尖”对于脖子高度的比率y_neck_corner_ratio
y_neck_corner = checkSharpCorner(neck_cut_image)
y_neck_corner_ratio = y_neck_corner / neck_height
# 3.3 取y_neck_corner_ratio与新衣服预先设定好的neck_ratio的最大值,作为最终的neck_ratio
neck_ratio = max(neck_ratio, y_neck_corner_ratio)
# 3.4 计算在neck_ratio下的脖子左衔接点坐标neck_left_x_byRatio,neck_left_y_byRatio、宽度neck_width_byRatio
neck_coordinate1, neck_coordinate2, neck_width_byRatio = locate_neck(neck_cut_image, float(neck_ratio))
neck_width_byRatio = neck_width_byRatio + CLOTH_WIDTH_CHANGE
neck_left_x_byRatio = neck_x_left + neck_coordinate1[1] + CLOTH_X_CHANGE
neck_left_y_byRatio = neck_y_top + neck_coordinate1[0]
# ============= 4.读取新衣服图,调整大小 =============== #
# 4.1 得到新衣服图片的拼贴坐标x, y以及脖子最底部的坐标y_neckline
CLOTH_HEIGHT = CLOTH_Y
RESIZE_RATIO = neck_width_byRatio / CLOTH_WIDTH
x, y = int(neck_left_x_byRatio - CLOTH_X * RESIZE_RATIO), neck_left_y_byRatio
y_neckline = y + int(CLOTH_HEIGHT * RESIZE_RATIO)
# 4.2 读取新衣服,并进行缩放
cloth = cv2.imread(cloth_model, -1)
cloth_height, cloth_width = cloth.shape[0], cloth.shape[1]
cloth = cv2.resize(cloth, (int(cloth_width * RESIZE_RATIO),
int(cloth_height * RESIZE_RATIO)), interpolation=cv2.INTER_AREA)
# 4.3 获得新衣服的A矩阵
_, _, _, cloth_a = cv2.split(cloth)
# ============= 5. 判断头发的前后关系,以及对于长发的背景填充、判定是否为长发等 =============== #
# 5.1 根据hair_number, 判断是0:头发披在后面、1:左前右后、2:左后右前还是3:都在前面
hair_number = checkHairLOrR(cloth_image_input_cut, input_a, neck_a, cloth_image_input_top_y)
# 5.2 对于长发的背景填充-将原衣服区域的部分变成黑色,并填充到最终图片作为背景
cloth_image_input_save = cloth_origin_image_a[:int(y+cloth_height*RESIZE_RATIO),
max(0, headneck_x_left-1):min(headneck_x_right+1, input_width)]
headneck_threshold_a_save = headneck_a[:int(y+cloth_height*RESIZE_RATIO),
max(0, headneck_x_left-1):min(headneck_x_right+1, input_width)]
headneck_mask = convert_black_array(headneck_threshold_a_save)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (15, 15))
cloth_image_input_save = cv2.dilate(cloth_image_input_save, kernel)
cloth_image_input_save = np.uint8(cloth_image_input_save*headneck_mask)
# 5.3 检测是否为长发
head_bottom_y = input_height - get_box_pro(head_image, model=2, correction_factor=0)[1]
isLongHair01 = checkLongHair(neck_cut_image, head_bottom_y, neck_top_y=neck_y_top)
isLongHair02 = checkLongHair2(head_bottom_y, cloth_image_input_top_y)
isLongHair = isLongHair01 and isLongHair02
# ============= 6.第一轮服装拼贴 =============== #
# 6.1 创建一个空白背景background
background = np.uint8((np.zeros([input_height, input_width, 4])))
# 6.2 盖上headneck_image
result_headneck_image = cover_image(headneck_image, background, 0, 0, mode=3)
# 6.3 如果space_adjust开启的话,background的底部将增加一些行数
if space_adjust is not None:
insert_array = np.uint8(np.zeros((space_adjust, input_width, 4)))
result_headneck_image = np.r_[result_headneck_image, insert_array]
# 6.4 盖上新衣服
result_cloth_image = cover_image(cloth, result_headneck_image, x, y, mode=3)
# 6.5 截出脖子与衣服交接的区域neck_cloth_image,以及它的A矩阵neck_cloth_a
neck_cloth_image = result_cloth_image[y:y_neckline,
neck_left_x_byRatio:neck_left_x_byRatio+neck_width_byRatio]
_, _, _, neck_cloth_a = cv2.split(neck_cloth_image)
_, neck_cloth_a = cv2.threshold(neck_cloth_a, 127, 255, cv2.THRESH_BINARY)
# ============= 7.第二轮服装拼贴 =============== #
# 7.1 检测neck_cloth_a中是否有黑点(即镂空区域)
# 如果black_dots_y不为None,说明存在镂空区域——需要进行脖子拉伸;反而则不存在,不需要
black_dots_y = find_black(neck_cloth_a)
# cv2.imwrite(test_image_path+"neck_cloth_a.jpg", neck_cloth_a)
# flag: 用于指示是否进行拉伸
flag = 0
# 7.2 如果存在镂空区域,则进行拉伸
if black_dots_y != None:
flag = 1
# cutNeckHeight:要拉伸的区域的顶部y值
# neckBelow:脖子底部的y值
# toHeight:拉伸区域的高度
cutNeckHeight = black_dots_y + y - 6
# if cutNeckHeight < neck_y_top+checkJaw(neck_cut_image, y_start=checkSharpCorner(neck_cut_image))[1]:
# print("拒绝!!!!!!")
# return 0, 0, 0, 0, 0
neckBelow = input_height-neck_y_bottom
toHeight = y_neckline-cutNeckHeight
print("cutNeckHeight:", cutNeckHeight)
print("toHeight:", toHeight)
print("neckBelow:", neckBelow)
# cv2.imwrite(test_image_path+"neck_image.png", neck_threshold_image)
# 对原有的脖子做拉伸,得到new_neck_image
new_neck_image = transformationNeck(neck_threshold_image,
cutNeckHeight=cutNeckHeight,
neckBelow=neckBelow,
toHeight=toHeight)
# cv2.imwrite(test_image_path+"new_neck_image.png", new_neck_image)
# 重新进行拼贴
result_headneck_image = cover_image(new_neck_image, result_headneck_image, 0, 0, mode=3)
result_headneck_image = cover_image(head_image, result_headneck_image, 0, 0, mode=3)
result_cloth_image = cover_image(cloth, result_headneck_image, x, y, mode=3)
_, _, _, neck_a = cv2.split(new_neck_image)
# 7.3 下面是对最终图的A矩阵进行处理
# 首先将neck_a与新衣服衔接点的左边两边区域删去,得到neck_a_leftright
neck_a_copy = neck_a.copy()
neck_a_copy[neck_left_y_byRatio:, :max(0, neck_left_x_byRatio-4)] = 0
neck_a_copy[neck_left_y_byRatio:,
min(input_width, neck_left_x_byRatio + neck_width_byRatio - CLOTH_X_CHANGE+4):] = 0
n_a_leftright = cv2.subtract(neck_a, neck_a_copy)
# 7.4 如果存在镂空区域,则对headneck_a做进一步处理
if black_dots_y != None:
neck_a = cv2.subtract(neck_a, n_a_leftright)
# 得到去掉脖子两翼的新的headneck_a
headneck_a = cv2.subtract(headneck_a, n_a_leftright)
# 将headneck_a覆盖上拉伸后的脖子A矩阵
headneck_a = np.uint8(cover_image(neck_a, headneck_a, 0, 0, mode=2))
else:
headneck_a = cv2.subtract(headneck_a, n_a_leftright)
# 7.5 如果是长发
if isLongHair:
# 在背景加入黑色矩形,填充抠头模型可能会出现的,部分长发没有抠全的部分
black_background_x1 = int(neck_left_x_byRatio - neck_width_byRatio * 0.1)
black_background_x2 = int(neck_left_x_byRatio + neck_width_byRatio * 1.1)
black_background_y1 = int(neck_y_top - neck_height * 0.1)
black_background_y2 = min(input_height - neck_y_bottom - 3, head_bottom_y)
headneck_a[black_background_y1:black_background_y2, black_background_x1:black_background_x2] = 255
# 在背景中,将原本衣服区域置为黑色
headneck_a = cover_image(cloth_image_input_save, headneck_a, max(0, headneck_x_left-1), 0, mode=2)
# 7.6 如果space_adjust开启的话,headneck_a的底部将增加一些行数
if space_adjust is not None:
insert_array = np.uint8(np.zeros((space_adjust, input_width)))
headneck_a = np.r_[headneck_a, insert_array]
# 7.7 盖上新衣服
new_a = np.uint8(cover_image(cloth_a, headneck_a, x, y, mode=2))
# neck_cloth_a = new_a[y:y_neckline, neck_left_x_byRatio:neck_left_x_byRatio + neck_width_byRatio]
# _, neck_cloth_a = cv2.threshold(neck_cloth_a, 127, 255, cv2.THRESH_BINARY)
# cv2.imwrite(test_image_path + "neck_cloth_a2.jpg", neck_cloth_a)
#
# if find_black(neck_cloth_a) != None:
# print("拒绝!!!!")
# return "拒绝"
# 7.8 如果有头发披在前面
if hair_front:
# 如果头发披在左边
if hair_number == 1:
result_cloth_image = cover_image(head_image[:, :head_image.shape[1] // 2], result_cloth_image, 0, 0, mode=3)
# 如果头发披在右边
elif hair_number == 2:
result_cloth_image = cover_image(head_image[:, head_image.shape[1] // 2:], result_cloth_image, head_image.shape[1] // 2, 0, mode=3)
# 如果头发披在两边
elif hair_number == 3:
result_cloth_image = cover_image(head_image, result_cloth_image, 0, 0, mode=3)
# 7.9 合成最终图片,并做底部空隙的移动
r, g, b, _ = cv2.split(result_cloth_image)
result_image = move(cv2.merge((r, g, b, new_a)))
# 7.10 返回:结果图、是否拉伸、头发前披状态、是否长发
return 1, result_image, flag, hair_number, isLongHair
if __name__ == "__main__":
pass