import cv2.detail import numpy as np def judge_layout(input_width, input_height, PHOTO_INTERVAL_W, PHOTO_INTERVAL_H, LIMIT_BLOCK_W, LIMIT_BLOCK_H): centerBlockHeight_1, centerBlockWidth_1 = input_height, input_width # 由证件照们组成的一个中心区块(1代表不转置排列) centerBlockHeight_2, centerBlockWidth_2 = input_width, input_height # 由证件照们组成的一个中心区块(2代表转置排列) # 1.不转置排列的情况下: layout_col_no_transpose = 0 # 行 layout_row_no_transpose = 0 # 列 for i in range(1, 4): centerBlockHeight_temp = input_height * i + PHOTO_INTERVAL_H * (i-1) if centerBlockHeight_temp < LIMIT_BLOCK_H: centerBlockHeight_1 = centerBlockHeight_temp layout_row_no_transpose = i else: break for j in range(1, 9): centerBlockWidth_temp = input_width * j + PHOTO_INTERVAL_W * (j-1) if centerBlockWidth_temp < LIMIT_BLOCK_W: centerBlockWidth_1 = centerBlockWidth_temp layout_col_no_transpose = j else: break layout_number_no_transpose = layout_row_no_transpose*layout_col_no_transpose # 2.转置排列的情况下: layout_col_transpose = 0 # 行 layout_row_transpose = 0 # 列 for i in range(1, 4): centerBlockHeight_temp = input_width * i + PHOTO_INTERVAL_H * (i-1) if centerBlockHeight_temp < LIMIT_BLOCK_H: centerBlockHeight_2 = centerBlockHeight_temp layout_row_transpose = i else: break for j in range(1, 9): centerBlockWidth_temp = input_height * j + PHOTO_INTERVAL_W * (j-1) if centerBlockWidth_temp < LIMIT_BLOCK_W: centerBlockWidth_2 = centerBlockWidth_temp layout_col_transpose = j else: break layout_number_transpose = layout_row_transpose*layout_col_transpose if layout_number_transpose > layout_number_no_transpose: layout_mode = (layout_col_transpose, layout_row_transpose, 2) return layout_mode, centerBlockWidth_2, centerBlockHeight_2 else: layout_mode = (layout_col_no_transpose, layout_row_no_transpose, 1) return layout_mode, centerBlockWidth_1, centerBlockHeight_1 def generate_layout_photo(input_height, input_width): # 1.基础参数表 LAYOUT_WIDTH = 1746 LAYOUT_HEIGHT = 1180 PHOTO_INTERVAL_H = 30 # 证件照与证件照之间的垂直距离 PHOTO_INTERVAL_W = 30 # 证件照与证件照之间的水平距离 SIDES_INTERVAL_H = 50 # 证件照与画布边缘的垂直距离 SIDES_INTERVAL_W = 70 # 证件照与画布边缘的水平距离 LIMIT_BLOCK_W = LAYOUT_WIDTH - 2*SIDES_INTERVAL_W LIMIT_BLOCK_H = LAYOUT_HEIGHT - 2*SIDES_INTERVAL_H # 2.创建一个1180x1746的空白画布 white_background = np.zeros([LAYOUT_HEIGHT, LAYOUT_WIDTH, 3], np.uint8) white_background.fill(255) # 3.计算照片的layout(列、行、横竖朝向),证件照组成的中心区块的分辨率 layout_mode, centerBlockWidth, centerBlockHeight = judge_layout(input_width, input_height, PHOTO_INTERVAL_W, PHOTO_INTERVAL_H, LIMIT_BLOCK_W, LIMIT_BLOCK_H) # 4.开始排列组合 x11 = (LAYOUT_WIDTH - centerBlockWidth)//2 y11 = (LAYOUT_HEIGHT - centerBlockHeight)//2 typography_arr = [] typography_rotate = False if layout_mode[2] == 2: input_height, input_width = input_width, input_height typography_rotate = True for j in range(layout_mode[1]): for i in range(layout_mode[0]): xi = x11 + i*input_width + i*PHOTO_INTERVAL_W yi = y11 + j*input_height + j*PHOTO_INTERVAL_H typography_arr.append([xi, yi]) return typography_arr, typography_rotate def generate_layout_image(input_image, typography_arr, typography_rotate, width=295, height=413): LAYOUT_WIDTH = 1746 LAYOUT_HEIGHT = 1180 white_background = np.zeros([LAYOUT_HEIGHT, LAYOUT_WIDTH, 3], np.uint8) white_background.fill(255) if input_image.shape[0] != height: input_image = cv2.resize(input_image, (width, height)) if typography_rotate: input_image = cv2.transpose(input_image) height, width = width, height for arr in typography_arr: locate_x, locate_y = arr[0], arr[1] white_background[locate_y:locate_y+height, locate_x:locate_x+width] = input_image return white_background if __name__ == "__main__": typography_arr, typography_rotate = generate_layout_photo(input_height=413, input_width=295) print("typography_arr:", typography_arr) print("typography_rotate:", typography_rotate) result_image = generate_layout_image(cv2.imread("./32.jpg"), typography_arr, typography_rotate, width=295, height=413) cv2.imwrite("./result_image.jpg", result_image)