Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
import pickle | |
import numpy as np | |
from pathlib import Path | |
import dnnlib | |
from dnnlib import tflib | |
import cv2 | |
import os | |
import subprocess | |
def check_gpu(): | |
return tf.test.is_gpu_available(cuda_only=False, min_cuda_compute_capability=None) | |
model_path = 'best_net.pkl' | |
#define load model functions | |
_cached_networks = dict() | |
def load_networks(path): | |
if path in _cached_networks: | |
return _cached_networks[path] | |
stream = open(path, 'rb') | |
tflib.init_tf() | |
with stream: | |
G, D, Gs = pickle.load(stream, encoding='latin1') | |
_cached_networks[path] = G, D, Gs | |
return G, D, Gs | |
# Code to load the StyleGAN2 Model | |
def load_model(): | |
_G, _D, Gs = load_networks(model_path) | |
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')] | |
Gs_kwargs = dnnlib.EasyDict() | |
Gs_kwargs.output_transform = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) | |
Gs_kwargs.randomize_noise = False | |
return Gs, noise_vars, Gs_kwargs | |
#define helper functions | |
def get_control_latent_vectors(path): | |
files = [x for x in Path(path).iterdir() if str(x).endswith('.npy')] | |
latent_vectors = {f.name[:-4]:np.load(f) for f in files} | |
return latent_vectors | |
#load latent directions | |
latent_controls = get_control_latent_vectors('trajectories/') | |
def generate_image_from_projected_latents(latent_vector): | |
images = Gs.components.synthesis.run(latent_vector, **Gs_kwargs) | |
return images | |
def frame_to_frame(latent_code): | |
modified_latent_code = np.copy(latent_code) | |
full_video = [generate_image_from_projected_latents(modified_latent_code)] | |
for i in range(49): | |
modified_latent_code = modified_latent_code + latent_controls[f'{i}{i+1}'] | |
ims = generate_image_from_projected_latents(modified_latent_code) | |
full_video.append(ims) | |
return np.array(full_video).squeeze() | |
#load the model | |
Gs, noise_vars, Gs_kwargs = load_model() | |
#select a random latent code | |
rnd = np.random.RandomState(3) | |
z = rnd.randn(1, *Gs.input_shape[1:]) | |
noise_vars = [var for name, var in Gs.components.synthesis.vars.items() if name.startswith('noise')] | |
tflib.set_vars({var: rnd.randn(*var.shape.as_list()) for var in noise_vars}) | |
random_img_latent_code = Gs.components.mapping.run(z,None) | |
#make it be ED frame | |
random_img_latent_code -= 0.7*latent_controls['time'] | |
vid = frame_to_frame(random_img_latent_code) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # Codec for .mp4 | |
temp_video_path="output.mp4" | |
out = cv2.VideoWriter(temp_video_path, fourcc, 20.0, (256, 256), isColor=False) | |
for i in range(vid.shape[0]): | |
frame = vid[i] | |
out.write(frame) | |
out.release() | |
out_path = "fixed_out.mp4" | |
command = ["ffmpeg", "-i", temp_video_path, "-vcodec", "libx264", out_path] | |
subprocess.run(command) | |
st.video(out_path) | |
os.remove(temp_video_path) | |
os.remove(out_path) |