Spaces:
Runtime error
Runtime error
File size: 6,342 Bytes
ebd4e51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import torch
from . import losses
from ..utils.rewards import init_scorer, get_self_critical_reward, get_self_critical_clipscore_reward
from ..utils.clipscore import CLIPScore
import numpy as np
class LossWrapper(torch.nn.Module):
def __init__(self, model, opt):
super(LossWrapper, self).__init__()
self.opt = opt
self.model = model
if opt.label_smoothing > 0:
self.crit = losses.LabelSmoothing(smoothing=opt.label_smoothing)
else:
self.crit = losses.LanguageModelCriterion()
self.rl_crit = losses.RewardCriterion()
self.struc_crit = losses.StructureLosses(opt)
self.clipscore_model = None
if self.opt.use_clipscore:
use_grammar = getattr(self.opt, 'use_grammar', False)
joint_out = getattr(self.opt, 'joint_out', False)
self.clipscore_model = CLIPScore(
mode=opt.clipscore_mode,
use_grammar=use_grammar,
joint_out=joint_out,
)
for p in self.clipscore_model.parameters():
p.requires_grad = False
if use_grammar:
state_dict = torch.load(self.opt.clip_load_path, map_location='cpu')
self.clipscore_model.load_state_dict(state_dict['state_dict'])
def forward(self, fc_feats, att_feats, labels, masks, att_masks, gts, gt_indices,
sc_flag, struc_flag, clip_vis_feats=None):
opt = self.opt
out = {}
if struc_flag:
if opt.structure_loss_weight < 1:
lm_loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:])
else:
lm_loss = torch.tensor(0).type_as(fc_feats)
if opt.structure_loss_weight > 0:
gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks,
opt={'sample_method':opt.train_sample_method,
'beam_size':opt.train_beam_size,
'output_logsoftmax': opt.struc_use_logsoftmax or opt.structure_loss_type == 'softmax_margin'\
or not 'margin' in opt.structure_loss_type,
'sample_n': opt.train_sample_n},
mode='sample')
gts = [gts[_] for _ in gt_indices.tolist()]
struc_loss = self.struc_crit(sample_logprobs, gen_result, gts)
else:
struc_loss = {'loss': torch.tensor(0).type_as(fc_feats),
'reward': torch.tensor(0).type_as(fc_feats)}
loss = (1-opt.structure_loss_weight) * lm_loss + opt.structure_loss_weight * struc_loss['loss']
out['lm_loss'] = lm_loss
out['struc_loss'] = struc_loss['loss']
out['reward'] = struc_loss['reward']
elif not sc_flag:
loss = self.crit(self.model(fc_feats, att_feats, labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:])
else:
self.model.eval()
with torch.no_grad():
greedy_res, _ = self.model(fc_feats, att_feats, att_masks,
mode='sample',
opt={'sample_method': opt.sc_sample_method,
'beam_size': opt.sc_beam_size})
self.model.train()
gen_result, sample_logprobs = self.model(fc_feats, att_feats, att_masks,
opt={'sample_method':opt.train_sample_method,
'beam_size':opt.train_beam_size,
'sample_n': opt.train_sample_n},
mode='sample')
gts = [gts[_] for _ in gt_indices.tolist()]
if getattr(self.opt, 'use_multi_rewards', False):
assert self.opt.use_clipscore
clipscore_reward_normalized, clipscore_unnormalized_mean, grammar_rewards = get_self_critical_clipscore_reward(
greedy_res, gts, gen_result, self.opt, self.clipscore_model, clip_vis_feats, self.model.vocab)
if self.opt.clipscore_mode == 'clip_s':
out['CLIP-S'] = clipscore_unnormalized_mean
elif self.opt.clipscore_mode == 'refclip_s':
out['RefCLIP-S'] = clipscore_unnormalized_mean
if getattr(self.opt, 'use_grammar', False):
out['grammar_reward'] = grammar_rewards.mean()
reward = clipscore_reward_normalized + grammar_rewards
else:
assert grammar_rewards is None
cider_reward_normalized, cider_unnormalized_mean = get_self_critical_reward(
greedy_res, gts, gen_result, self.opt)
out['CIDEr'] = cider_unnormalized_mean
if isinstance(cider_reward_normalized, np.ndarray):
cider_reward_normalized = torch.from_numpy(cider_reward_normalized).to(clipscore_reward_normalized.device)
reward = clipscore_reward_normalized + cider_reward_normalized
else:
if self.opt.use_clipscore:
clipscore_reward_normalized, clipscore_unnormalized_mean, _ = get_self_critical_clipscore_reward(
greedy_res, gts, gen_result, self.opt, self.clipscore_model, clip_vis_feats, self.model.vocab)
if self.opt.clipscore_mode == 'clip_s':
out['CLIP-S'] = clipscore_unnormalized_mean
elif self.opt.clipscore_mode == 'refclip_s':
out['RefCLIP-S'] = clipscore_unnormalized_mean
reward = clipscore_reward_normalized
else:
cider_reward_normalized, cider_unnormalized_mean = get_self_critical_reward(
greedy_res, gts, gen_result, self.opt)
out['CIDEr'] = cider_unnormalized_mean
reward = cider_reward_normalized
if isinstance(reward, np.ndarray):
reward = torch.from_numpy(reward)
reward = reward.to(sample_logprobs)
loss = self.rl_crit(sample_logprobs, gen_result.data, reward)
out['reward'] = reward[:,0].mean()
out['loss'] = loss
return out
|