reimagine-it / app.py
Alberto Carmona
Enable all the code
2773b59
raw
history blame
6.47 kB
import torch
import torch.nn as nn
import numpy as np
import json
import captioning.utils.opts as opts
import captioning.models as models
import captioning.utils.misc as utils
import pytorch_lightning as pl
import gradio as gr
from diffusers import LDMTextToImagePipeline
# import PIL.Image
import random
import os
# Checkpoint class
class ModelCheckpoint(pl.callbacks.ModelCheckpoint):
def on_keyboard_interrupt(self, trainer, pl_module):
# Save model when keyboard interrupt
filepath = os.path.join(self.dirpath, self.prefix + 'interrupt.ckpt')
self._save_model(filepath)
device = 'cpu' #@param ["cuda", "cpu"] {allow-input: true}
reward = 'clips_grammar'
cfg = f'./configs/phase2/clipRN50_{reward}.yml'
print("Loading cfg from", cfg)
opt = opts.parse_opt(parse=False, cfg=cfg)
import gdown
url = "https://drive.google.com/drive/folders/1nSX9aS7pPK4-OTHYtsUD_uEkwIQVIV7W"
gdown.download_folder(url, quiet=True, use_cookies=False, output="save/")
url = "https://drive.google.com/uc?id=1HNRE1MYO9wxmtMHLC8zURraoNFu157Dp"
gdown.download(url, quiet=True, use_cookies=False, output="data/")
dict_json = json.load(open('./data/cocotalk.json'))
print(dict_json.keys())
ix_to_word = dict_json['ix_to_word']
vocab_size = len(ix_to_word)
print('vocab size:', vocab_size)
seq_length = 1
opt.vocab_size = vocab_size
opt.seq_length = seq_length
opt.batch_size = 1
opt.vocab = ix_to_word
model = models.setup(opt)
del opt.vocab
ckpt_path = opt.checkpoint_path + '-last.ckpt'
print("Loading checkpoint from", ckpt_path)
raw_state_dict = torch.load(
ckpt_path,
map_location=device)
strict = True
state_dict = raw_state_dict['state_dict']
if '_vocab' in state_dict:
model.vocab = utils.deserialize(state_dict['_vocab'])
del state_dict['_vocab']
elif strict:
raise KeyError
if '_opt' in state_dict:
saved_model_opt = utils.deserialize(state_dict['_opt'])
del state_dict['_opt']
# Make sure the saved opt is compatible with the curren topt
need_be_same = ["caption_model",
"rnn_type", "rnn_size", "num_layers"]
for checkme in need_be_same:
if getattr(saved_model_opt, checkme) in ['updown', 'topdown'] and \
getattr(opt, checkme) in ['updown', 'topdown']:
continue
assert getattr(saved_model_opt, checkme) == getattr(
opt, checkme), "Command line argument and saved model disagree on '%s' " % checkme
elif strict:
raise KeyError
res = model.load_state_dict(state_dict, strict)
print(res)
model = model.to(device)
model.eval();
import clip
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
from PIL import Image
from timm.models.vision_transformer import resize_pos_embed
clip_model, clip_transform = clip.load("RN50", jit=False, device=device)
preprocess = Compose([
Resize((448, 448), interpolation=Image.BICUBIC),
CenterCrop((448, 448)),
ToTensor()
])
image_mean = torch.Tensor([0.48145466, 0.4578275, 0.40821073]).to(device).reshape(3, 1, 1)
image_std = torch.Tensor([0.26862954, 0.26130258, 0.27577711]).to(device).reshape(3, 1, 1)
num_patches = 196 #600 * 1000 // 32 // 32
pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, clip_model.visual.attnpool.positional_embedding.shape[-1], device=device),)
pos_embed.weight = resize_pos_embed(clip_model.visual.attnpool.positional_embedding.unsqueeze(0), pos_embed)
clip_model.visual.attnpool.positional_embedding = pos_embed
# End below
print('Loading the model: CompVis/ldm-text2im-large-256')
ldm_pipeline = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
def generate_image_from_text(prompt, steps=100, seed=42, guidance_scale=6.0):
print('RUN: generate_image_from_text')
torch.cuda.empty_cache()
generator = torch.manual_seed(seed)
images = ldm_pipeline([prompt], generator=generator, num_inference_steps=steps, eta=0.3, guidance_scale=guidance_scale)["sample"]
return images[0]
def generate_text_from_image(img):
print('RUN: generate_text_from_image')
with torch.no_grad():
image = preprocess(img)
image = torch.tensor(np.stack([image])).to(device)
image -= image_mean
image /= image_std
tmp_att, tmp_fc = clip_model.encode_image(image)
tmp_att = tmp_att[0].permute(1, 2, 0)
tmp_fc = tmp_fc[0]
att_feat = tmp_att
fc_feat = tmp_fc
# Inference configurations
eval_kwargs = {}
eval_kwargs.update(vars(opt))
verbose = eval_kwargs.get('verbose', True)
verbose_beam = eval_kwargs.get('verbose_beam', 0)
verbose_loss = eval_kwargs.get('verbose_loss', 1)
# dataset = eval_kwargs.get('dataset', 'coco')
beam_size = eval_kwargs.get('beam_size', 1)
sample_n = eval_kwargs.get('sample_n', 1)
remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0)
with torch.no_grad():
fc_feats = torch.zeros((1,0)).to(device)
att_feats = att_feat.view(1, 196, 2048).float().to(device)
att_masks = None
# forward the model to also get generated samples for each image
# Only leave one feature for each image, in case duplicate sample
tmp_eval_kwargs = eval_kwargs.copy()
tmp_eval_kwargs.update({'sample_n': 1})
seq, seq_logprobs = model(
fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
seq = seq.data
sents = utils.decode_sequence(model.vocab, seq)
return sents[0]
def generate_drawing_from_image(img, steps=100, seed=42, guidance_scale=6.0):
print('RUN: generate_drawing_from_image')
caption = generate_text_from_image(img)
gen_image = generate_image_from_text(caption, steps=steps, seed=seed, guidance_scale=guidance_scale)
return gen_image
random_seed = random.randint(0, 2147483647)
def test_fn(**kwargs):
return None
gr.Interface(
generate_drawing_from_image,
# test_fn,
inputs=[
gr.Image(type="pil"),
gr.inputs.Slider(1, 100, label='Inference Steps', default=50, step=1),
gr.inputs.Slider(0, 2147483647, label='Seed', default=random_seed, step=1),
gr.inputs.Slider(1.0, 20.0, label='Guidance Scale - how much the prompt will influence the results', default=6.0, step=0.1),
],
outputs=gr.Image(shape=[256,256], type="pil", elem_id="output_image"),
css="#output_image{width: 256px}",
).launch()