Spaces:
Runtime error
Runtime error
Alberto Carmona
commited on
Commit
·
6d1b898
1
Parent(s):
4912cf9
Remove unused code
Browse files
app.py
CHANGED
@@ -9,7 +9,6 @@ import pytorch_lightning as pl
|
|
9 |
import gradio as gr
|
10 |
|
11 |
from diffusers import LDMTextToImagePipeline
|
12 |
-
# import PIL.Image
|
13 |
import random
|
14 |
import os
|
15 |
|
@@ -21,7 +20,7 @@ class ModelCheckpoint(pl.callbacks.ModelCheckpoint):
|
|
21 |
filepath = os.path.join(self.dirpath, self.prefix + 'interrupt.ckpt')
|
22 |
self._save_model(filepath)
|
23 |
|
24 |
-
device = 'cpu'
|
25 |
reward = 'clips_grammar'
|
26 |
|
27 |
cfg = f'./configs/phase2/clipRN50_{reward}.yml'
|
@@ -93,7 +92,7 @@ model = model.to(device)
|
|
93 |
model.eval();
|
94 |
|
95 |
import clip
|
96 |
-
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor
|
97 |
from PIL import Image
|
98 |
from timm.models.vision_transformer import resize_pos_embed
|
99 |
|
@@ -138,21 +137,11 @@ def generate_text_from_image(img):
|
|
138 |
tmp_fc = tmp_fc[0]
|
139 |
|
140 |
att_feat = tmp_att
|
141 |
-
fc_feat = tmp_fc
|
142 |
|
143 |
# Inference configurations
|
144 |
eval_kwargs = {}
|
145 |
eval_kwargs.update(vars(opt))
|
146 |
|
147 |
-
verbose = eval_kwargs.get('verbose', True)
|
148 |
-
verbose_beam = eval_kwargs.get('verbose_beam', 0)
|
149 |
-
verbose_loss = eval_kwargs.get('verbose_loss', 1)
|
150 |
-
|
151 |
-
# dataset = eval_kwargs.get('dataset', 'coco')
|
152 |
-
beam_size = eval_kwargs.get('beam_size', 1)
|
153 |
-
sample_n = eval_kwargs.get('sample_n', 1)
|
154 |
-
remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0)
|
155 |
-
|
156 |
with torch.no_grad():
|
157 |
fc_feats = torch.zeros((1,0)).to(device)
|
158 |
att_feats = att_feat.view(1, 196, 2048).float().to(device)
|
@@ -162,7 +151,7 @@ def generate_text_from_image(img):
|
|
162 |
# Only leave one feature for each image, in case duplicate sample
|
163 |
tmp_eval_kwargs = eval_kwargs.copy()
|
164 |
tmp_eval_kwargs.update({'sample_n': 1})
|
165 |
-
seq,
|
166 |
fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
|
167 |
seq = seq.data
|
168 |
|
|
|
9 |
import gradio as gr
|
10 |
|
11 |
from diffusers import LDMTextToImagePipeline
|
|
|
12 |
import random
|
13 |
import os
|
14 |
|
|
|
20 |
filepath = os.path.join(self.dirpath, self.prefix + 'interrupt.ckpt')
|
21 |
self._save_model(filepath)
|
22 |
|
23 |
+
device = 'cpu'
|
24 |
reward = 'clips_grammar'
|
25 |
|
26 |
cfg = f'./configs/phase2/clipRN50_{reward}.yml'
|
|
|
92 |
model.eval();
|
93 |
|
94 |
import clip
|
95 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor
|
96 |
from PIL import Image
|
97 |
from timm.models.vision_transformer import resize_pos_embed
|
98 |
|
|
|
137 |
tmp_fc = tmp_fc[0]
|
138 |
|
139 |
att_feat = tmp_att
|
|
|
140 |
|
141 |
# Inference configurations
|
142 |
eval_kwargs = {}
|
143 |
eval_kwargs.update(vars(opt))
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
with torch.no_grad():
|
146 |
fc_feats = torch.zeros((1,0)).to(device)
|
147 |
att_feats = att_feat.view(1, 196, 2048).float().to(device)
|
|
|
151 |
# Only leave one feature for each image, in case duplicate sample
|
152 |
tmp_eval_kwargs = eval_kwargs.copy()
|
153 |
tmp_eval_kwargs.update({'sample_n': 1})
|
154 |
+
seq, _ = model(
|
155 |
fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
|
156 |
seq = seq.data
|
157 |
|