File size: 19,089 Bytes
a03b3ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
import os
import tempfile
import textwrap
import warnings
from pathlib import Path
from unittest.mock import MagicMock, patch
import pytest
from fastapi.testclient import TestClient
from gradio_client import media_data
from huggingface_hub import HfFolder
import gradio as gr
from gradio.context import Context
from gradio.exceptions import GradioVersionIncompatibleError, InvalidApiNameError
from gradio.external import TooManyRequestsError, cols_to_rows, get_tabular_examples
"""
WARNING: These tests have an external dependency: namely that Hugging Face's
Hub and Space APIs do not change, and they keep their most famous models up.
So if, e.g. Spaces is down, then these test will not pass.
These tests actually test gr.load() and gr.Blocks.load() but are
included in a separate file because of the above-mentioned dependency.
"""
# Mark the whole module as flaky
pytestmark = pytest.mark.flaky
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
HF_TOKEN = os.getenv("HF_TOKEN") or HfFolder.get_token()
class TestLoadInterface:
def test_audio_to_audio(self):
model_type = "audio-to-audio"
interface = gr.load(
name="speechbrain/mtl-mimic-voicebank",
src="models",
alias=model_type,
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Audio)
assert isinstance(interface.output_components[0], gr.Audio)
def test_question_answering(self):
model_type = "image-classification"
interface = gr.load(
name="lysandre/tiny-vit-random",
src="models",
alias=model_type,
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Image)
assert isinstance(interface.output_components[0], gr.Label)
def test_text_generation(self):
model_type = "text_generation"
interface = gr.load(
"models/gpt2", alias=model_type, description="This is a test description"
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.output_components[0], gr.Textbox)
assert any(
"This is a test description" in d["props"].get("value", "")
for d in interface.get_config_file()["components"]
)
def test_summarization(self):
model_type = "summarization"
interface = gr.load(
"models/facebook/bart-large-cnn", hf_token=None, alias=model_type
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.output_components[0], gr.Textbox)
def test_translation(self):
model_type = "translation"
interface = gr.load(
"models/facebook/bart-large-cnn", hf_token=None, alias=model_type
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.output_components[0], gr.Textbox)
def test_text2text_generation(self):
model_type = "text2text-generation"
interface = gr.load(
"models/sshleifer/tiny-mbart", hf_token=None, alias=model_type
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.output_components[0], gr.Textbox)
def test_text_classification(self):
model_type = "text-classification"
interface = gr.load(
"models/distilbert-base-uncased-finetuned-sst-2-english",
hf_token=None,
alias=model_type,
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.output_components[0], gr.Label)
def test_fill_mask(self):
model_type = "fill-mask"
interface = gr.load("models/bert-base-uncased", hf_token=None, alias=model_type)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.output_components[0], gr.Label)
def test_zero_shot_classification(self):
model_type = "zero-shot-classification"
interface = gr.load(
"models/facebook/bart-large-mnli", hf_token=None, alias=model_type
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.input_components[1], gr.Textbox)
assert isinstance(interface.input_components[2], gr.Checkbox)
assert isinstance(interface.output_components[0], gr.Label)
def test_automatic_speech_recognition(self):
model_type = "automatic-speech-recognition"
interface = gr.load(
"models/facebook/wav2vec2-base-960h", hf_token=None, alias=model_type
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Audio)
assert isinstance(interface.output_components[0], gr.Textbox)
def test_image_classification(self):
model_type = "image-classification"
interface = gr.load(
"models/google/vit-base-patch16-224", hf_token=None, alias=model_type
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Image)
assert isinstance(interface.output_components[0], gr.Label)
def test_feature_extraction(self):
model_type = "feature-extraction"
interface = gr.load(
"models/sentence-transformers/distilbert-base-nli-mean-tokens",
hf_token=None,
alias=model_type,
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.output_components[0], gr.Dataframe)
def test_sentence_similarity(self):
model_type = "text-to-speech"
interface = gr.load(
"models/julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
hf_token=None,
alias=model_type,
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.output_components[0], gr.Audio)
def test_text_to_speech(self):
model_type = "text-to-speech"
interface = gr.load(
"models/julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
hf_token=None,
alias=model_type,
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.output_components[0], gr.Audio)
def test_text_to_image(self):
model_type = "text-to-image"
interface = gr.load(
"models/osanseviero/BigGAN-deep-128", hf_token=None, alias=model_type
)
assert interface.__name__ == model_type
assert isinstance(interface.input_components[0], gr.Textbox)
assert isinstance(interface.output_components[0], gr.Image)
def test_english_to_spanish(self):
with pytest.raises(GradioVersionIncompatibleError):
gr.load("spaces/gradio-tests/english_to_spanish", title="hi")
def test_english_to_spanish_v4(self):
with pytest.warns(UserWarning):
io = gr.load("spaces/gradio-tests/english_to_spanishv4-sse", title="hi")
assert isinstance(io.input_components[0], gr.Textbox)
assert isinstance(io.output_components[0], gr.Textbox)
def test_sentiment_model(self):
io = gr.load("models/distilbert-base-uncased-finetuned-sst-2-english")
try:
assert io("I am happy, I love you")["label"] == "POSITIVE"
except TooManyRequestsError:
pass
def test_image_classification_model(self):
io = gr.load(name="models/google/vit-base-patch16-224")
try:
assert io("gradio/test_data/lion.jpg")["label"] == "lion"
except TooManyRequestsError:
pass
def test_translation_model(self):
io = gr.load(name="models/t5-base")
try:
output = io("My name is Sarah and I live in London")
assert output == "Mein Name ist Sarah und ich lebe in London"
except TooManyRequestsError:
pass
def test_raise_incompatbile_version_error(self):
with pytest.raises(GradioVersionIncompatibleError):
gr.load("spaces/gradio-tests/titanic-survival")
def test_numerical_to_label_space(self):
io = gr.load("spaces/gradio-tests/titanic-survivalv4-sse")
try:
assert io.theme.name == "soft"
assert io("male", 77, 10)["label"] == "Perishes"
except TooManyRequestsError:
pass
def test_visual_question_answering(self):
io = gr.load("models/dandelin/vilt-b32-finetuned-vqa")
try:
output = io("gradio/test_data/lion.jpg", "What is in the image?")
assert isinstance(output, dict) and "label" in output
except TooManyRequestsError:
pass
def test_image_to_text(self):
io = gr.load("models/nlpconnect/vit-gpt2-image-captioning")
try:
output = io("gradio/test_data/lion.jpg")
assert isinstance(output, str)
except TooManyRequestsError:
pass
def test_conversational_in_blocks(self):
with gr.Blocks() as io:
gr.load("models/microsoft/DialoGPT-medium")
app, _, _ = io.launch(prevent_thread_lock=True)
client = TestClient(app)
response = client.post(
"/api/predict/",
json={"session_hash": "foo", "data": ["Hi!", None], "fn_index": 0},
)
output = response.json()
assert isinstance(output["data"], list)
assert isinstance(output["data"][0], list)
assert "foo" in app.state_holder
def test_speech_recognition_model(self):
io = gr.load("models/facebook/wav2vec2-base-960h")
try:
output = io("gradio/test_data/test_audio.wav")
assert output is not None
except TooManyRequestsError:
pass
app, _, _ = io.launch(prevent_thread_lock=True, show_error=True)
client = TestClient(app)
resp = client.post(
"api/predict",
json={"fn_index": 0, "data": [media_data.BASE64_AUDIO], "name": "sample"},
)
try:
if resp.status_code != 200:
warnings.warn("Request for speech recognition model failed!")
if (
"Could not complete request to HuggingFace API"
in resp.json()["error"]
):
pass
else:
raise AssertionError()
else:
assert resp.json()["data"] is not None
finally:
io.close()
def test_text_to_image_model(self):
io = gr.load("models/osanseviero/BigGAN-deep-128")
try:
filename = io("chest")
assert filename.endswith(".jpg") or filename.endswith(".jpeg")
except TooManyRequestsError:
pass
def test_private_space(self):
io = gr.load(
"spaces/gradio-tests/not-actually-private-spacev4-sse", hf_token=HF_TOKEN
)
try:
output = io("abc")
assert output == "abc"
assert io.theme.name == "default"
except TooManyRequestsError:
pass
@pytest.mark.xfail
def test_private_space_audio(self):
io = gr.load(
"spaces/gradio-tests/not-actually-private-space-audiov4-sse",
hf_token=HF_TOKEN,
)
try:
output = io(media_data.BASE64_AUDIO["path"])
assert output.endswith(".wav")
except TooManyRequestsError:
pass
def test_multiple_spaces_one_private(self):
with gr.Blocks():
gr.load(
"spaces/gradio-tests/not-actually-private-spacev4-sse",
hf_token=HF_TOKEN,
)
gr.load(
"spaces/gradio/test-loading-examplesv4-sse",
)
assert Context.hf_token == HF_TOKEN
def test_loading_files_via_proxy_works(self):
io = gr.load(
"spaces/gradio-tests/test-loading-examples-privatev4-sse", hf_token=HF_TOKEN
)
assert io.theme.name == "default"
app, _, _ = io.launch(prevent_thread_lock=True)
test_client = TestClient(app)
r = test_client.get(
"/proxy=https://gradio-tests-test-loading-examples-privatev4-sse.hf.space/file=Bunny.obj"
)
assert r.status_code == 200
def test_private_space_v4_sse_v1(self):
io = gr.load(
"spaces/gradio-tests/not-actually-private-spacev4-sse-v1",
hf_token=HfFolder.get_token(),
)
try:
output = io("abc")
assert output == "abc"
assert io.theme.name == "gradio/monochrome"
except TooManyRequestsError:
pass
class TestLoadInterfaceWithExamples:
def test_interface_load_examples(self, tmp_path):
test_file_dir = Path(Path(__file__).parent, "test_files")
with patch("gradio.utils.get_cache_folder", return_value=tmp_path):
gr.load(
name="models/google/vit-base-patch16-224",
examples=[Path(test_file_dir, "cheetah1.jpg")],
cache_examples=False,
)
def test_interface_load_cache_examples(self, tmp_path):
test_file_dir = Path(Path(__file__).parent, "test_files")
with patch(
"gradio.utils.get_cache_folder", return_value=Path(tempfile.mkdtemp())
):
gr.load(
name="models/google/vit-base-patch16-224",
examples=[Path(test_file_dir, "cheetah1.jpg")],
cache_examples=True,
)
def test_proxy_url(self):
demo = gr.load("spaces/gradio/test-loading-examplesv4-sse")
assert all(
c["props"]["proxy_url"]
== "https://gradio-test-loading-examplesv4-sse.hf.space/"
for c in demo.get_config_file()["components"]
)
def test_root_url_deserialization(self):
demo = gr.load("spaces/gradio/simple_galleryv4-sse")
gallery = demo("test")
assert all("caption" in d for d in gallery)
def test_interface_with_examples(self):
# This demo has the "fake_event" correctly removed
demo = gr.load("spaces/gradio-tests/test-calculator-1v4-sse")
assert demo(2, "add", 3) == 5
# This demo still has the "fake_event". both should work
demo = gr.load("spaces/gradio-tests/test-calculator-2v4-sse")
assert demo(2, "add", 4) == 6
def test_get_tabular_examples_replaces_nan_with_str_nan():
readme = """
---
tags:
- sklearn
- skops
- tabular-classification
widget:
structuredData:
attribute_0:
- material_7
- material_7
- material_7
measurement_2:
- 14.206
- 15.094
- .nan
---
"""
mock_response = MagicMock()
mock_response.status_code = 200
mock_response.text = textwrap.dedent(readme)
with patch("gradio.external.httpx.get", return_value=mock_response):
examples = get_tabular_examples("foo-model")
assert examples["measurement_2"] == [14.206, 15.094, "NaN"]
def test_cols_to_rows():
assert cols_to_rows({"a": [1, 2, "NaN"], "b": [1, "NaN", 3]}) == (
["a", "b"],
[[1, 1], [2, "NaN"], ["NaN", 3]],
)
assert cols_to_rows({"a": [1, 2, "NaN", 4], "b": [1, "NaN", 3]}) == (
["a", "b"],
[[1, 1], [2, "NaN"], ["NaN", 3], [4, "NaN"]],
)
assert cols_to_rows({"a": [1, 2, "NaN"], "b": [1, "NaN", 3, 5]}) == (
["a", "b"],
[[1, 1], [2, "NaN"], ["NaN", 3], ["NaN", 5]],
)
assert cols_to_rows({"a": None, "b": [1, "NaN", 3, 5]}) == (
["a", "b"],
[["NaN", 1], ["NaN", "NaN"], ["NaN", 3], ["NaN", 5]],
)
assert cols_to_rows({"a": None, "b": None}) == (["a", "b"], [])
def check_dataframe(config):
input_df = next(
c for c in config["components"] if c["props"].get("label", "") == "Input Rows"
)
assert input_df["props"]["headers"] == ["a", "b"]
assert input_df["props"]["row_count"] == (1, "dynamic")
assert input_df["props"]["col_count"] == (2, "fixed")
def check_dataset(config, readme_examples):
# No Examples
if not any(readme_examples.values()):
assert not any(c for c in config["components"] if c["type"] == "dataset")
else:
dataset = next(c for c in config["components"] if c["type"] == "dataset")
assert dataset["props"]["samples"] == [[cols_to_rows(readme_examples)[1]]]
@pytest.mark.xfail
def test_load_blocks_with_default_values():
io = gr.load("spaces/gradio-tests/min-dallev4-sse")
assert isinstance(io.get_config_file()["components"][0]["props"]["value"], list)
io = gr.load("spaces/gradio-tests/min-dalle-laterv4-sse")
assert isinstance(io.get_config_file()["components"][0]["props"]["value"], list)
io = gr.load("spaces/gradio-tests/dataframe_loadv4-sse")
assert io.get_config_file()["components"][0]["props"]["value"] == {
"headers": ["a", "b"],
"data": [[1, 4], [2, 5], [3, 6]],
}
@pytest.mark.parametrize(
"hypothetical_readme",
[
{"a": [1, 2, "NaN"], "b": [1, "NaN", 3]},
{"a": [1, 2, "NaN", 4], "b": [1, "NaN", 3]},
{"a": [1, 2, "NaN"], "b": [1, "NaN", 3, 5]},
{"a": None, "b": [1, "NaN", 3, 5]},
{"a": None, "b": None},
],
)
def test_can_load_tabular_model_with_different_widget_data(hypothetical_readme):
with patch(
"gradio.external.get_tabular_examples", return_value=hypothetical_readme
):
io = gr.load("models/scikit-learn/tabular-playground")
check_dataframe(io.config)
check_dataset(io.config, hypothetical_readme)
def test_raise_value_error_when_api_name_invalid():
demo = gr.load(name="spaces/gradio/hello_worldv4-sse")
with pytest.raises(InvalidApiNameError):
demo("freddy", api_name="route does not exist")
def test_use_api_name_in_call_method():
# Interface
demo = gr.load(name="spaces/gradio/hello_worldv4-sse")
assert demo("freddy", api_name="predict") == "Hello freddy!"
# Blocks demo with multiple functions
# app = gr.load(name="spaces/gradio/multiple-api-name-test")
# assert app(15, api_name="minus_one") == 14
# assert app(4, api_name="double") == 8
|