File size: 19,089 Bytes
a03b3ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import os
import tempfile
import textwrap
import warnings
from pathlib import Path
from unittest.mock import MagicMock, patch

import pytest
from fastapi.testclient import TestClient
from gradio_client import media_data
from huggingface_hub import HfFolder

import gradio as gr
from gradio.context import Context
from gradio.exceptions import GradioVersionIncompatibleError, InvalidApiNameError
from gradio.external import TooManyRequestsError, cols_to_rows, get_tabular_examples

"""
WARNING: These tests have an external dependency: namely that Hugging Face's
Hub and Space APIs do not change, and they keep their most famous models up.
So if, e.g. Spaces is down, then these test will not pass.

These tests actually test gr.load() and gr.Blocks.load() but are
included in a separate file because of the above-mentioned dependency.
"""

# Mark the whole module as flaky
pytestmark = pytest.mark.flaky

os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"

HF_TOKEN = os.getenv("HF_TOKEN") or HfFolder.get_token()


class TestLoadInterface:
    def test_audio_to_audio(self):
        model_type = "audio-to-audio"
        interface = gr.load(
            name="speechbrain/mtl-mimic-voicebank",
            src="models",
            alias=model_type,
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Audio)
        assert isinstance(interface.output_components[0], gr.Audio)

    def test_question_answering(self):
        model_type = "image-classification"
        interface = gr.load(
            name="lysandre/tiny-vit-random",
            src="models",
            alias=model_type,
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Image)
        assert isinstance(interface.output_components[0], gr.Label)

    def test_text_generation(self):
        model_type = "text_generation"
        interface = gr.load(
            "models/gpt2", alias=model_type, description="This is a test description"
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.output_components[0], gr.Textbox)
        assert any(
            "This is a test description" in d["props"].get("value", "")
            for d in interface.get_config_file()["components"]
        )

    def test_summarization(self):
        model_type = "summarization"
        interface = gr.load(
            "models/facebook/bart-large-cnn", hf_token=None, alias=model_type
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.output_components[0], gr.Textbox)

    def test_translation(self):
        model_type = "translation"
        interface = gr.load(
            "models/facebook/bart-large-cnn", hf_token=None, alias=model_type
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.output_components[0], gr.Textbox)

    def test_text2text_generation(self):
        model_type = "text2text-generation"
        interface = gr.load(
            "models/sshleifer/tiny-mbart", hf_token=None, alias=model_type
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.output_components[0], gr.Textbox)

    def test_text_classification(self):
        model_type = "text-classification"
        interface = gr.load(
            "models/distilbert-base-uncased-finetuned-sst-2-english",
            hf_token=None,
            alias=model_type,
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.output_components[0], gr.Label)

    def test_fill_mask(self):
        model_type = "fill-mask"
        interface = gr.load("models/bert-base-uncased", hf_token=None, alias=model_type)
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.output_components[0], gr.Label)

    def test_zero_shot_classification(self):
        model_type = "zero-shot-classification"
        interface = gr.load(
            "models/facebook/bart-large-mnli", hf_token=None, alias=model_type
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.input_components[1], gr.Textbox)
        assert isinstance(interface.input_components[2], gr.Checkbox)
        assert isinstance(interface.output_components[0], gr.Label)

    def test_automatic_speech_recognition(self):
        model_type = "automatic-speech-recognition"
        interface = gr.load(
            "models/facebook/wav2vec2-base-960h", hf_token=None, alias=model_type
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Audio)
        assert isinstance(interface.output_components[0], gr.Textbox)

    def test_image_classification(self):
        model_type = "image-classification"
        interface = gr.load(
            "models/google/vit-base-patch16-224", hf_token=None, alias=model_type
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Image)
        assert isinstance(interface.output_components[0], gr.Label)

    def test_feature_extraction(self):
        model_type = "feature-extraction"
        interface = gr.load(
            "models/sentence-transformers/distilbert-base-nli-mean-tokens",
            hf_token=None,
            alias=model_type,
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.output_components[0], gr.Dataframe)

    def test_sentence_similarity(self):
        model_type = "text-to-speech"
        interface = gr.load(
            "models/julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
            hf_token=None,
            alias=model_type,
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.output_components[0], gr.Audio)

    def test_text_to_speech(self):
        model_type = "text-to-speech"
        interface = gr.load(
            "models/julien-c/ljspeech_tts_train_tacotron2_raw_phn_tacotron_g2p_en_no_space_train",
            hf_token=None,
            alias=model_type,
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.output_components[0], gr.Audio)

    def test_text_to_image(self):
        model_type = "text-to-image"
        interface = gr.load(
            "models/osanseviero/BigGAN-deep-128", hf_token=None, alias=model_type
        )
        assert interface.__name__ == model_type
        assert isinstance(interface.input_components[0], gr.Textbox)
        assert isinstance(interface.output_components[0], gr.Image)

    def test_english_to_spanish(self):
        with pytest.raises(GradioVersionIncompatibleError):
            gr.load("spaces/gradio-tests/english_to_spanish", title="hi")

    def test_english_to_spanish_v4(self):
        with pytest.warns(UserWarning):
            io = gr.load("spaces/gradio-tests/english_to_spanishv4-sse", title="hi")
        assert isinstance(io.input_components[0], gr.Textbox)
        assert isinstance(io.output_components[0], gr.Textbox)

    def test_sentiment_model(self):
        io = gr.load("models/distilbert-base-uncased-finetuned-sst-2-english")
        try:
            assert io("I am happy, I love you")["label"] == "POSITIVE"
        except TooManyRequestsError:
            pass

    def test_image_classification_model(self):
        io = gr.load(name="models/google/vit-base-patch16-224")
        try:
            assert io("gradio/test_data/lion.jpg")["label"] == "lion"
        except TooManyRequestsError:
            pass

    def test_translation_model(self):
        io = gr.load(name="models/t5-base")
        try:
            output = io("My name is Sarah and I live in London")
            assert output == "Mein Name ist Sarah und ich lebe in London"
        except TooManyRequestsError:
            pass

    def test_raise_incompatbile_version_error(self):
        with pytest.raises(GradioVersionIncompatibleError):
            gr.load("spaces/gradio-tests/titanic-survival")

    def test_numerical_to_label_space(self):
        io = gr.load("spaces/gradio-tests/titanic-survivalv4-sse")
        try:
            assert io.theme.name == "soft"
            assert io("male", 77, 10)["label"] == "Perishes"
        except TooManyRequestsError:
            pass

    def test_visual_question_answering(self):
        io = gr.load("models/dandelin/vilt-b32-finetuned-vqa")
        try:
            output = io("gradio/test_data/lion.jpg", "What is in the image?")
            assert isinstance(output, dict) and "label" in output
        except TooManyRequestsError:
            pass

    def test_image_to_text(self):
        io = gr.load("models/nlpconnect/vit-gpt2-image-captioning")
        try:
            output = io("gradio/test_data/lion.jpg")
            assert isinstance(output, str)
        except TooManyRequestsError:
            pass

    def test_conversational_in_blocks(self):
        with gr.Blocks() as io:
            gr.load("models/microsoft/DialoGPT-medium")
        app, _, _ = io.launch(prevent_thread_lock=True)
        client = TestClient(app)
        response = client.post(
            "/api/predict/",
            json={"session_hash": "foo", "data": ["Hi!", None], "fn_index": 0},
        )
        output = response.json()
        assert isinstance(output["data"], list)
        assert isinstance(output["data"][0], list)
        assert "foo" in app.state_holder

    def test_speech_recognition_model(self):
        io = gr.load("models/facebook/wav2vec2-base-960h")
        try:
            output = io("gradio/test_data/test_audio.wav")
            assert output is not None
        except TooManyRequestsError:
            pass

        app, _, _ = io.launch(prevent_thread_lock=True, show_error=True)
        client = TestClient(app)
        resp = client.post(
            "api/predict",
            json={"fn_index": 0, "data": [media_data.BASE64_AUDIO], "name": "sample"},
        )
        try:
            if resp.status_code != 200:
                warnings.warn("Request for speech recognition model failed!")
                if (
                    "Could not complete request to HuggingFace API"
                    in resp.json()["error"]
                ):
                    pass
                else:
                    raise AssertionError()
            else:
                assert resp.json()["data"] is not None
        finally:
            io.close()

    def test_text_to_image_model(self):
        io = gr.load("models/osanseviero/BigGAN-deep-128")
        try:
            filename = io("chest")
            assert filename.endswith(".jpg") or filename.endswith(".jpeg")
        except TooManyRequestsError:
            pass

    def test_private_space(self):
        io = gr.load(
            "spaces/gradio-tests/not-actually-private-spacev4-sse", hf_token=HF_TOKEN
        )
        try:
            output = io("abc")
            assert output == "abc"
            assert io.theme.name == "default"
        except TooManyRequestsError:
            pass

    @pytest.mark.xfail
    def test_private_space_audio(self):
        io = gr.load(
            "spaces/gradio-tests/not-actually-private-space-audiov4-sse",
            hf_token=HF_TOKEN,
        )
        try:
            output = io(media_data.BASE64_AUDIO["path"])
            assert output.endswith(".wav")
        except TooManyRequestsError:
            pass

    def test_multiple_spaces_one_private(self):
        with gr.Blocks():
            gr.load(
                "spaces/gradio-tests/not-actually-private-spacev4-sse",
                hf_token=HF_TOKEN,
            )
            gr.load(
                "spaces/gradio/test-loading-examplesv4-sse",
            )
        assert Context.hf_token == HF_TOKEN

    def test_loading_files_via_proxy_works(self):
        io = gr.load(
            "spaces/gradio-tests/test-loading-examples-privatev4-sse", hf_token=HF_TOKEN
        )
        assert io.theme.name == "default"
        app, _, _ = io.launch(prevent_thread_lock=True)
        test_client = TestClient(app)
        r = test_client.get(
            "/proxy=https://gradio-tests-test-loading-examples-privatev4-sse.hf.space/file=Bunny.obj"
        )
        assert r.status_code == 200

    def test_private_space_v4_sse_v1(self):
        io = gr.load(
            "spaces/gradio-tests/not-actually-private-spacev4-sse-v1",
            hf_token=HfFolder.get_token(),
        )
        try:
            output = io("abc")
            assert output == "abc"
            assert io.theme.name == "gradio/monochrome"
        except TooManyRequestsError:
            pass


class TestLoadInterfaceWithExamples:
    def test_interface_load_examples(self, tmp_path):
        test_file_dir = Path(Path(__file__).parent, "test_files")
        with patch("gradio.utils.get_cache_folder", return_value=tmp_path):
            gr.load(
                name="models/google/vit-base-patch16-224",
                examples=[Path(test_file_dir, "cheetah1.jpg")],
                cache_examples=False,
            )

    def test_interface_load_cache_examples(self, tmp_path):
        test_file_dir = Path(Path(__file__).parent, "test_files")
        with patch(
            "gradio.utils.get_cache_folder", return_value=Path(tempfile.mkdtemp())
        ):
            gr.load(
                name="models/google/vit-base-patch16-224",
                examples=[Path(test_file_dir, "cheetah1.jpg")],
                cache_examples=True,
            )

    def test_proxy_url(self):
        demo = gr.load("spaces/gradio/test-loading-examplesv4-sse")
        assert all(
            c["props"]["proxy_url"]
            == "https://gradio-test-loading-examplesv4-sse.hf.space/"
            for c in demo.get_config_file()["components"]
        )

    def test_root_url_deserialization(self):
        demo = gr.load("spaces/gradio/simple_galleryv4-sse")
        gallery = demo("test")
        assert all("caption" in d for d in gallery)

    def test_interface_with_examples(self):
        # This demo has the "fake_event" correctly removed
        demo = gr.load("spaces/gradio-tests/test-calculator-1v4-sse")
        assert demo(2, "add", 3) == 5

        # This demo still has the "fake_event". both should work
        demo = gr.load("spaces/gradio-tests/test-calculator-2v4-sse")
        assert demo(2, "add", 4) == 6


def test_get_tabular_examples_replaces_nan_with_str_nan():
    readme = """
        ---
        tags:
        - sklearn
        - skops
        - tabular-classification
        widget:
          structuredData:
            attribute_0:
            - material_7
            - material_7
            - material_7
            measurement_2:
            - 14.206
            - 15.094
            - .nan
        ---
    """
    mock_response = MagicMock()
    mock_response.status_code = 200
    mock_response.text = textwrap.dedent(readme)

    with patch("gradio.external.httpx.get", return_value=mock_response):
        examples = get_tabular_examples("foo-model")
        assert examples["measurement_2"] == [14.206, 15.094, "NaN"]


def test_cols_to_rows():
    assert cols_to_rows({"a": [1, 2, "NaN"], "b": [1, "NaN", 3]}) == (
        ["a", "b"],
        [[1, 1], [2, "NaN"], ["NaN", 3]],
    )
    assert cols_to_rows({"a": [1, 2, "NaN", 4], "b": [1, "NaN", 3]}) == (
        ["a", "b"],
        [[1, 1], [2, "NaN"], ["NaN", 3], [4, "NaN"]],
    )
    assert cols_to_rows({"a": [1, 2, "NaN"], "b": [1, "NaN", 3, 5]}) == (
        ["a", "b"],
        [[1, 1], [2, "NaN"], ["NaN", 3], ["NaN", 5]],
    )
    assert cols_to_rows({"a": None, "b": [1, "NaN", 3, 5]}) == (
        ["a", "b"],
        [["NaN", 1], ["NaN", "NaN"], ["NaN", 3], ["NaN", 5]],
    )
    assert cols_to_rows({"a": None, "b": None}) == (["a", "b"], [])


def check_dataframe(config):
    input_df = next(
        c for c in config["components"] if c["props"].get("label", "") == "Input Rows"
    )
    assert input_df["props"]["headers"] == ["a", "b"]
    assert input_df["props"]["row_count"] == (1, "dynamic")
    assert input_df["props"]["col_count"] == (2, "fixed")


def check_dataset(config, readme_examples):
    # No Examples
    if not any(readme_examples.values()):
        assert not any(c for c in config["components"] if c["type"] == "dataset")
    else:
        dataset = next(c for c in config["components"] if c["type"] == "dataset")
        assert dataset["props"]["samples"] == [[cols_to_rows(readme_examples)[1]]]


@pytest.mark.xfail
def test_load_blocks_with_default_values():
    io = gr.load("spaces/gradio-tests/min-dallev4-sse")
    assert isinstance(io.get_config_file()["components"][0]["props"]["value"], list)

    io = gr.load("spaces/gradio-tests/min-dalle-laterv4-sse")
    assert isinstance(io.get_config_file()["components"][0]["props"]["value"], list)

    io = gr.load("spaces/gradio-tests/dataframe_loadv4-sse")
    assert io.get_config_file()["components"][0]["props"]["value"] == {
        "headers": ["a", "b"],
        "data": [[1, 4], [2, 5], [3, 6]],
    }


@pytest.mark.parametrize(
    "hypothetical_readme",
    [
        {"a": [1, 2, "NaN"], "b": [1, "NaN", 3]},
        {"a": [1, 2, "NaN", 4], "b": [1, "NaN", 3]},
        {"a": [1, 2, "NaN"], "b": [1, "NaN", 3, 5]},
        {"a": None, "b": [1, "NaN", 3, 5]},
        {"a": None, "b": None},
    ],
)
def test_can_load_tabular_model_with_different_widget_data(hypothetical_readme):
    with patch(
        "gradio.external.get_tabular_examples", return_value=hypothetical_readme
    ):
        io = gr.load("models/scikit-learn/tabular-playground")
        check_dataframe(io.config)
        check_dataset(io.config, hypothetical_readme)


def test_raise_value_error_when_api_name_invalid():
    demo = gr.load(name="spaces/gradio/hello_worldv4-sse")
    with pytest.raises(InvalidApiNameError):
        demo("freddy", api_name="route does not exist")


def test_use_api_name_in_call_method():
    # Interface
    demo = gr.load(name="spaces/gradio/hello_worldv4-sse")
    assert demo("freddy", api_name="predict") == "Hello freddy!"

    # Blocks demo with multiple functions
    # app = gr.load(name="spaces/gradio/multiple-api-name-test")
    # assert app(15, api_name="minus_one") == 14
    # assert app(4, api_name="double") == 8