Spaces:
Build error
Build error
import os | |
import requests | |
import gradio as gr | |
url_caption = os.environ["CAPTION_NODE"] | |
url_vqa = os.environ["VQA_NODE"] | |
def image_caption(file_path): | |
files = {"picture": open(file_path, "rb")} | |
resp = requests.post(url_caption, | |
files=files, | |
verify=False) | |
resp = resp.json() | |
desc = resp["data"]["desc"] | |
return desc | |
def vqa(file_path, question): | |
files = {"picture": open(file_path, "rb")} | |
question = {"question": question} | |
resp = requests.post(url_vqa, | |
files=files, | |
data=question, | |
verify=False) | |
resp = resp.json() | |
ans = resp["data"]["answer"] | |
return ans | |
def read_content(file_path): | |
with open(file_path, 'r', encoding='utf-8') as f: | |
content = f.read() | |
return content | |
examples_caption = [ | |
os.path.join(os.path.dirname(__file__), "examples/caption/00.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/caption/01.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/caption/02.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/caption/03.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/caption/04.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/caption/05.jpg") | |
] | |
examples_vqa = [ | |
os.path.join(os.path.dirname(__file__), "examples/vqa/00.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/vqa/01.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/vqa/02.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/vqa/03.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/vqa/04.jpg"), | |
os.path.join(os.path.dirname(__file__), "examples/vqa/05.jpg") | |
] | |
css = """ | |
.gradio-container {background-image: url('file=./background.jpg'); background-size:cover; background-repeat: no-repeat;} | |
#infer { | |
background: linear-gradient(to bottom right, #FFD8B4, #FFB066); | |
border: 1px solid #ffd8b4; | |
border-radius: 8px; | |
color: #ee7400 | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML(read_content("./header.html")) | |
gr.Markdown("# MindSpore Zidongtaichu ") | |
gr.Markdown( | |
"\nOPT (Omni-Perception Pre-Trainer) is the abbreviation of the full-scene perception pre-training model. " | |
" It is an important achievement of the Chinese Academy of Sciences Automation and Huawei on the road to exploring general artificial intelligence." | |
" The modal 100 billion large model, the Chinese name is Zidong.Taichu." | |
" supports efficient collaboration among different modalities of text, vision, and voice," | |
" and can support industrial applications such as film and television creation, industrial quality inspection, and intelligent driving." | |
) | |
with gr.Tab("以图生文 (Image Caption)"): | |
with gr.Row(): | |
caption_input = gr.Image( | |
type="filepath", | |
value=examples_caption[0], | |
) | |
caption_output = gr.TextArea(label="description", | |
interactive=False) | |
caption_button = gr.Button("Submit", elem_id="infer") | |
gr.Examples( | |
examples=examples_caption, | |
inputs=caption_input, | |
) | |
caption_button.click(image_caption, | |
inputs=[caption_input], | |
outputs=[caption_output]) | |
with gr.Tab("视觉问答 (VQA)"): | |
with gr.Row(): | |
with gr.Column(): | |
q_pic_input = gr.Image(type="filepath", | |
label="step1: select a picture") | |
gr.Examples( | |
examples=examples_vqa, | |
inputs=q_pic_input, | |
) | |
with gr.Column(): | |
vqa_question = gr.TextArea( | |
label="step2: question", | |
lines=5, | |
placeholder="please enter a question related to the picture" | |
) | |
vqa_answer = gr.TextArea(label="answer", | |
lines=5, | |
interactive=False) | |
vqa_button = gr.Button("Submit", elem_id="infer") | |
vqa_button.click(vqa, | |
inputs=[q_pic_input, vqa_question], | |
outputs=[vqa_answer]) | |
with gr.Accordion("Open for More!"): | |
gr.Markdown( | |
"- If you want to know more about the foundation models of MindSpore, please visit " | |
"[The Foundation Models Platform for Mindspore](https://xihe.mindspore.cn/)" | |
) | |
gr.Markdown( | |
"- If you want to know more about OPT models, please visit " | |
"[OPT](https://gitee.com/mindspore/zidongtaichu)") | |
gr.Markdown( | |
"- Try [zidongtaichu model on the Foundation Models Platform for Mindspore]" | |
"(https://xihe.mindspore.cn/modelzoo/taichug)") | |
demo.queue(concurrency_count=5) | |
demo.launch(enable_queue=True) | |