Zidongtaichu / app.py
lwdragon's picture
Update app.py
658194c
import os
import requests
import gradio as gr
url_caption = os.environ["CAPTION_NODE"]
url_vqa = os.environ["VQA_NODE"]
def image_caption(file_path):
files = {"picture": open(file_path, "rb")}
resp = requests.post(url_caption,
files=files,
verify=False)
resp = resp.json()
desc = resp["data"]["desc"]
return desc
def vqa(file_path, question):
files = {"picture": open(file_path, "rb")}
question = {"question": question}
resp = requests.post(url_vqa,
files=files,
data=question,
verify=False)
resp = resp.json()
ans = resp["data"]["answer"]
return ans
def read_content(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
examples_caption = [
os.path.join(os.path.dirname(__file__), "examples/caption/00.jpg"),
os.path.join(os.path.dirname(__file__), "examples/caption/01.jpg"),
os.path.join(os.path.dirname(__file__), "examples/caption/02.jpg"),
os.path.join(os.path.dirname(__file__), "examples/caption/03.jpg"),
os.path.join(os.path.dirname(__file__), "examples/caption/04.jpg"),
os.path.join(os.path.dirname(__file__), "examples/caption/05.jpg")
]
examples_vqa = [
os.path.join(os.path.dirname(__file__), "examples/vqa/00.jpg"),
os.path.join(os.path.dirname(__file__), "examples/vqa/01.jpg"),
os.path.join(os.path.dirname(__file__), "examples/vqa/02.jpg"),
os.path.join(os.path.dirname(__file__), "examples/vqa/03.jpg"),
os.path.join(os.path.dirname(__file__), "examples/vqa/04.jpg"),
os.path.join(os.path.dirname(__file__), "examples/vqa/05.jpg")
]
css = """
.gradio-container {background-image: url('file=./background.jpg'); background-size:cover; background-repeat: no-repeat;}
#infer {
background: linear-gradient(to bottom right, #FFD8B4, #FFB066);
border: 1px solid #ffd8b4;
border-radius: 8px;
color: #ee7400
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(read_content("./header.html"))
gr.Markdown("# MindSpore Zidongtaichu ")
gr.Markdown(
"\nOPT (Omni-Perception Pre-Trainer) is the abbreviation of the full-scene perception pre-training model. "
" It is an important achievement of the Chinese Academy of Sciences Automation and Huawei on the road to exploring general artificial intelligence."
" The modal 100 billion large model, the Chinese name is Zidong.Taichu."
" supports efficient collaboration among different modalities of text, vision, and voice,"
" and can support industrial applications such as film and television creation, industrial quality inspection, and intelligent driving."
)
with gr.Tab("以图生文 (Image Caption)"):
with gr.Row():
caption_input = gr.Image(
type="filepath",
value=examples_caption[0],
)
caption_output = gr.TextArea(label="description",
interactive=False)
caption_button = gr.Button("Submit", elem_id="infer")
gr.Examples(
examples=examples_caption,
inputs=caption_input,
)
caption_button.click(image_caption,
inputs=[caption_input],
outputs=[caption_output])
with gr.Tab("视觉问答 (VQA)"):
with gr.Row():
with gr.Column():
q_pic_input = gr.Image(type="filepath",
label="step1: select a picture")
gr.Examples(
examples=examples_vqa,
inputs=q_pic_input,
)
with gr.Column():
vqa_question = gr.TextArea(
label="step2: question",
lines=5,
placeholder="please enter a question related to the picture"
)
vqa_answer = gr.TextArea(label="answer",
lines=5,
interactive=False)
vqa_button = gr.Button("Submit", elem_id="infer")
vqa_button.click(vqa,
inputs=[q_pic_input, vqa_question],
outputs=[vqa_answer])
with gr.Accordion("Open for More!"):
gr.Markdown(
"- If you want to know more about the foundation models of MindSpore, please visit "
"[The Foundation Models Platform for Mindspore](https://xihe.mindspore.cn/)"
)
gr.Markdown(
"- If you want to know more about OPT models, please visit "
"[OPT](https://gitee.com/mindspore/zidongtaichu)")
gr.Markdown(
"- Try [zidongtaichu model on the Foundation Models Platform for Mindspore]"
"(https://xihe.mindspore.cn/modelzoo/taichug)")
demo.queue(concurrency_count=5)
demo.launch(enable_queue=True)