File size: 3,090 Bytes
16f428a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
from transformers import is_torch_xpu_available

from modules import sampler_hijack, shared
from modules.logging_colors import logger
from modules.text_generation import generate_reply

global_scores = None


def get_next_logits(prompt, state, use_samplers, previous, top_logits=25, return_dict=False):
    if shared.model is None:
        logger.error("No model is loaded! Select one in the Model tab.")
        return 'Error: No model is loaded1 Select one in the Model tab.', previous

    is_non_hf_exllamav2 = shared.model.__class__.__name__ == 'Exllamav2Model'
    is_non_hf_llamacpp = shared.model.__class__.__name__ == 'LlamaCppModel'

    if use_samplers:
        if any([is_non_hf_exllamav2, is_non_hf_llamacpp]):
            logger.error("Sampler hijacking is not supported non-Huggingface loaders.")
            # sampling is all done in c for exllama, so it is really hard to hijack
            # it should be possible to hijack llamacpp sampler by hijacking all their sampling methods,
            # but it is not implemented yet
            return 'Error: Sampler hijacking is not supported non-Huggingface loaders. Please disable the "Use samplers" option.', previous

        state['max_new_tokens'] = 1
        state['auto_max_new_tokens'] = False
        for _ in generate_reply(prompt, state):
            pass

        scores = sampler_hijack.global_scores[-1]
    else:
        if is_non_hf_exllamav2:
            if is_torch_xpu_available():
                tokens = shared.tokenizer.encode(prompt).to("xpu:0")
            else:
                tokens = shared.tokenizer.encode(prompt).cuda()
            scores = shared.model.get_logits(tokens)[-1][-1]
        elif is_non_hf_llamacpp:
            tokens = shared.tokenizer.encode(prompt)
            scores = shared.model.get_logits(tokens)[-1][-1]
        else:
            if is_torch_xpu_available():
                tokens = shared.tokenizer.encode(prompt, return_tensors='pt').to("xpu:0")
            else:
                tokens = shared.tokenizer.encode(prompt, return_tensors='pt').cuda()
            output = shared.model(input_ids=tokens)
            scores = output['logits'][-1][-1]

    probs = torch.softmax(scores, dim=-1, dtype=torch.float)
    topk_values, topk_indices = torch.topk(probs, k=top_logits, largest=True, sorted=True)
    if is_non_hf_llamacpp:
        topk_indices = [i.expand((1, 1)) for i in topk_indices]

    if hasattr(shared.tokenizer, 'convert_ids_to_tokens'):
        tokens = [shared.tokenizer.convert_ids_to_tokens(int(i)) for i in topk_indices]
    else:
        tokens = [shared.tokenizer.decode(i) for i in topk_indices]

    if return_dict:
        topk_values = [float(i) for i in topk_values]
        output = {}
        for row in list(zip(topk_values, tokens)):
            output[row[1]] = row[0]

        return output
    else:
        topk_values = [f"{float(i):.5f}" for i in topk_values]
        output = ''
        for row in list(zip(topk_values, tokens)):
            output += f"{row[0]}  -  {repr(row[1])}\n"

        return output, previous