File size: 2,525 Bytes
16f428a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
from ctransformers import AutoConfig, AutoModelForCausalLM
from modules import shared
from modules.callbacks import Iteratorize
from modules.logging_colors import logger
class CtransformersModel:
def __init__(self):
pass
@classmethod
def from_pretrained(cls, path):
result = cls()
config = AutoConfig.from_pretrained(
str(path),
threads=shared.args.threads if shared.args.threads != 0 else -1,
gpu_layers=shared.args.n_gpu_layers,
batch_size=shared.args.n_batch,
context_length=shared.args.n_ctx,
stream=True,
mmap=not shared.args.no_mmap,
mlock=shared.args.mlock
)
result.model = AutoModelForCausalLM.from_pretrained(
str(result.model_dir(path) if result.model_type_is_auto() else path),
model_type=(None if result.model_type_is_auto() else shared.args.model_type),
config=config
)
logger.info(f'Using ctransformers model_type: {result.model.model_type} for {result.model.model_path}')
return result, result
def model_type_is_auto(self):
return shared.args.model_type is None or shared.args.model_type == "Auto" or shared.args.model_type == "None"
def model_dir(self, path):
if path.is_file():
return path.parent
return path
def encode(self, string, **kwargs):
return self.model.tokenize(string)
def decode(self, ids):
return self.model.detokenize(ids)
def generate(self, prompt, state, callback=None):
prompt = prompt if type(prompt) is str else prompt.decode()
# ctransformers uses -1 for random seed
generator = self.model(
prompt=prompt,
max_new_tokens=state['max_new_tokens'],
temperature=state['temperature'],
top_p=state['top_p'],
top_k=state['top_k'],
repetition_penalty=state['repetition_penalty'],
last_n_tokens=state['repetition_penalty_range'],
seed=int(state['seed'])
)
output = ""
for token in generator:
if callback:
callback(token)
output += token
return output
def generate_with_streaming(self, *args, **kwargs):
with Iteratorize(self.generate, args, kwargs, callback=None) as generator:
reply = ''
for token in generator:
reply += token
yield reply
|