Spaces:
Runtime error
Runtime error
root
commited on
Commit
·
12deb01
1
Parent(s):
c050fbf
initial commit
Browse files- .gitattributes +2 -0
- app.py +72 -0
- checkpoints/t2m/t2m_motiondiffuse/meta/mean.npy +3 -0
- checkpoints/t2m/t2m_motiondiffuse/meta/std.npy +3 -0
- checkpoints/t2m/t2m_motiondiffuse/model/latest.tar +3 -0
- checkpoints/t2m/t2m_motiondiffuse/opt.txt +38 -0
- datasets/__init__.py +11 -0
- datasets/dataloader.py +130 -0
- datasets/dataset.py +164 -0
- datasets/evaluator.py +441 -0
- datasets/evaluator_models.py +438 -0
- models/__init__.py +4 -0
- models/gaussian_diffusion.py +1145 -0
- models/transformer.py +426 -0
- options/base_options.py +86 -0
- options/evaluate_options.py +27 -0
- options/train_options.py +26 -0
- requirements.txt +4 -0
- tools/evaluation.py +278 -0
- tools/train.py +89 -0
- tools/visualization.py +30 -0
- trainers/__init__.py +4 -0
- trainers/ddpm_trainer.py +222 -0
- utils/__init__.py +0 -0
- utils/get_opt.py +91 -0
- utils/metrics.py +146 -0
- utils/motion_process.py +515 -0
- utils/paramUtil.py +63 -0
- utils/plot_script.py +115 -0
- utils/quaternion.py +423 -0
- utils/skeleton.py +199 -0
- utils/utils.py +131 -0
- utils/word_vectorizer.py +80 -0
.gitattributes
CHANGED
@@ -29,3 +29,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
checkpoints/ filter=lfs diff=lfs merge=lfs -text
|
33 |
+
checkpoints/t2m/t2m_motiondiffuse/model/latest.tar filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import gradio as gr
|
4 |
+
try:
|
5 |
+
os.system("pip install -r requirements.txt")
|
6 |
+
except Exception as e:
|
7 |
+
print(e)
|
8 |
+
|
9 |
+
sys.path.insert(0, '.')
|
10 |
+
|
11 |
+
|
12 |
+
from utils.get_opt import get_opt
|
13 |
+
from os.path import join as pjoin
|
14 |
+
import numpy as np
|
15 |
+
from trainers import DDPMTrainer
|
16 |
+
from models import MotionTransformer
|
17 |
+
|
18 |
+
device = 'cpu'
|
19 |
+
opt = get_opt("checkpoints/t2m/t2m_motiondiffuse/opt.txt", device)
|
20 |
+
opt.do_denoise = True
|
21 |
+
|
22 |
+
assert opt.dataset_name == "t2m"
|
23 |
+
opt.data_root = './dataset/HumanML3D'
|
24 |
+
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
|
25 |
+
opt.text_dir = pjoin(opt.data_root, 'texts')
|
26 |
+
opt.joints_num = 22
|
27 |
+
opt.dim_pose = 263
|
28 |
+
|
29 |
+
mean = np.load(pjoin(opt.meta_dir, 'mean.npy'))
|
30 |
+
std = np.load(pjoin(opt.meta_dir, 'std.npy'))
|
31 |
+
|
32 |
+
|
33 |
+
def build_models(opt):
|
34 |
+
encoder = MotionTransformer(
|
35 |
+
input_feats=opt.dim_pose,
|
36 |
+
num_frames=opt.max_motion_length,
|
37 |
+
num_layers=opt.num_layers,
|
38 |
+
latent_dim=opt.latent_dim,
|
39 |
+
no_clip=opt.no_clip,
|
40 |
+
no_eff=opt.no_eff)
|
41 |
+
return encoder
|
42 |
+
|
43 |
+
|
44 |
+
encoder = build_models(opt).to(device)
|
45 |
+
trainer = DDPMTrainer(opt, encoder)
|
46 |
+
trainer.load(pjoin(opt.model_dir, opt.which_epoch + '.tar'))
|
47 |
+
|
48 |
+
trainer.eval_mode()
|
49 |
+
trainer.to(opt.device)
|
50 |
+
|
51 |
+
def generate(prompt, length):
|
52 |
+
from tools.visualization import process
|
53 |
+
result_path = "outputs/" + str(hash(prompt)) + ".mp4"
|
54 |
+
process(trainer, opt, device, mean, std, prompt, int(length), result_path)
|
55 |
+
return result_path
|
56 |
+
|
57 |
+
demo = gr.Interface(
|
58 |
+
fn=generate,
|
59 |
+
inputs=["text", gr.Slider(20, 196, value=60)],
|
60 |
+
examples=[
|
61 |
+
["the man throws a punch with each hand.", 58],
|
62 |
+
["a person jogs clockwise in a circle.", 178],
|
63 |
+
["a person spins quickly and takes off running.", 29],
|
64 |
+
["a person is walking slowly forward.", 142],
|
65 |
+
["a person quickly waves with their right hand", 46],
|
66 |
+
["a person performing a slight bow", 89],
|
67 |
+
],
|
68 |
+
outputs="video",
|
69 |
+
title="MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model",
|
70 |
+
description="This is an interactive demo for MotionDiffuse. For more information, feel free to visit our project page(https://mingyuan-zhang.github.io/projects/MotionDiffuse.html).")
|
71 |
+
|
72 |
+
demo.launch(share=True)
|
checkpoints/t2m/t2m_motiondiffuse/meta/mean.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebc7c543b4e27e886dba7e1bcde8fc0149f12a981586a548df98977b4b7c1a6a
|
3 |
+
size 1180
|
checkpoints/t2m/t2m_motiondiffuse/meta/std.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a91111b5b44b2b6785cedf426ede6f8bc412ecb995914563e2810738de179e4
|
3 |
+
size 1180
|
checkpoints/t2m/t2m_motiondiffuse/model/latest.tar
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60a8b95aa5d190a95a6b3c20515301f72d70646b7a0d7f927c7167b968fa1222
|
3 |
+
size 953997124
|
checkpoints/t2m/t2m_motiondiffuse/opt.txt
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
------------ Options -------------
|
2 |
+
batch_size: 128
|
3 |
+
checkpoints_dir: ./checkpoints
|
4 |
+
dataset_name: t2m
|
5 |
+
decomp_name: Decomp_SP001_SM001_H512
|
6 |
+
dim_att_vec: 512
|
7 |
+
dim_dec_hidden: 1024
|
8 |
+
dim_movement_dec_hidden: 512
|
9 |
+
dim_movement_enc_hidden: 512
|
10 |
+
dim_movement_latent: 512
|
11 |
+
dim_pos_hidden: 1024
|
12 |
+
dim_pri_hidden: 1024
|
13 |
+
dim_text_hidden: 512
|
14 |
+
dim_z: 128
|
15 |
+
early_stop_count: 3
|
16 |
+
estimator_mod: bigru
|
17 |
+
eval_every_e: 5
|
18 |
+
feat_bias: 5
|
19 |
+
gpu_id: -1
|
20 |
+
is_continue: False
|
21 |
+
is_train: True
|
22 |
+
lambda_kld: 0.005
|
23 |
+
lambda_rec_mot: 1
|
24 |
+
lambda_rec_mov: 1
|
25 |
+
log_every: 50
|
26 |
+
lr: 0.0002
|
27 |
+
max_sub_epoch: 50
|
28 |
+
max_text_len: 20
|
29 |
+
n_layers_dec: 1
|
30 |
+
n_layers_pos: 1
|
31 |
+
n_layers_pri: 1
|
32 |
+
name: t2m_motiondiffuse
|
33 |
+
save_every_e: 10
|
34 |
+
save_latest: 500
|
35 |
+
text_enc_mod: bigru
|
36 |
+
times: 50
|
37 |
+
unit_length: 4
|
38 |
+
-------------- End ----------------
|
datasets/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .dataset import Text2MotionDataset
|
2 |
+
from .evaluator import (
|
3 |
+
EvaluationDataset,
|
4 |
+
get_dataset_motion_loader,
|
5 |
+
get_motion_loader,
|
6 |
+
EvaluatorModelWrapper)
|
7 |
+
from .dataloader import build_dataloader
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
'Text2MotionDataset', 'EvaluationDataset', 'build_dataloader',
|
11 |
+
'get_dataset_motion_loader', 'get_motion_loader']
|
datasets/dataloader.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import platform
|
2 |
+
import random
|
3 |
+
from functools import partial
|
4 |
+
from typing import Optional, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from mmcv.runner import get_dist_info
|
8 |
+
from mmcv.utils import Registry, build_from_cfg
|
9 |
+
from torch.utils.data import DataLoader
|
10 |
+
from torch.utils.data.dataset import Dataset
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch.utils.data import DistributedSampler as _DistributedSampler
|
14 |
+
|
15 |
+
|
16 |
+
class DistributedSampler(_DistributedSampler):
|
17 |
+
|
18 |
+
def __init__(self,
|
19 |
+
dataset,
|
20 |
+
num_replicas=None,
|
21 |
+
rank=None,
|
22 |
+
shuffle=True,
|
23 |
+
round_up=True):
|
24 |
+
super().__init__(dataset, num_replicas=num_replicas, rank=rank)
|
25 |
+
self.shuffle = shuffle
|
26 |
+
self.round_up = round_up
|
27 |
+
if self.round_up:
|
28 |
+
self.total_size = self.num_samples * self.num_replicas
|
29 |
+
else:
|
30 |
+
self.total_size = len(self.dataset)
|
31 |
+
|
32 |
+
def __iter__(self):
|
33 |
+
# deterministically shuffle based on epoch
|
34 |
+
if self.shuffle:
|
35 |
+
g = torch.Generator()
|
36 |
+
g.manual_seed(self.epoch)
|
37 |
+
indices = torch.randperm(len(self.dataset), generator=g).tolist()
|
38 |
+
else:
|
39 |
+
indices = torch.arange(len(self.dataset)).tolist()
|
40 |
+
|
41 |
+
# add extra samples to make it evenly divisible
|
42 |
+
if self.round_up:
|
43 |
+
indices = (
|
44 |
+
indices *
|
45 |
+
int(self.total_size / len(indices) + 1))[:self.total_size]
|
46 |
+
assert len(indices) == self.total_size
|
47 |
+
|
48 |
+
# subsample
|
49 |
+
indices = indices[self.rank:self.total_size:self.num_replicas]
|
50 |
+
if self.round_up:
|
51 |
+
assert len(indices) == self.num_samples
|
52 |
+
|
53 |
+
return iter(indices)
|
54 |
+
|
55 |
+
|
56 |
+
def build_dataloader(dataset: Dataset,
|
57 |
+
samples_per_gpu: int,
|
58 |
+
workers_per_gpu: int,
|
59 |
+
num_gpus: Optional[int] = 1,
|
60 |
+
dist: Optional[bool] = True,
|
61 |
+
shuffle: Optional[bool] = True,
|
62 |
+
round_up: Optional[bool] = True,
|
63 |
+
seed: Optional[Union[int, None]] = None,
|
64 |
+
persistent_workers: Optional[bool] = True,
|
65 |
+
**kwargs):
|
66 |
+
"""Build PyTorch DataLoader.
|
67 |
+
|
68 |
+
In distributed training, each GPU/process has a dataloader.
|
69 |
+
In non-distributed training, there is only one dataloader for all GPUs.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
dataset (:obj:`Dataset`): A PyTorch dataset.
|
73 |
+
samples_per_gpu (int): Number of training samples on each GPU, i.e.,
|
74 |
+
batch size of each GPU.
|
75 |
+
workers_per_gpu (int): How many subprocesses to use for data loading
|
76 |
+
for each GPU.
|
77 |
+
num_gpus (int, optional): Number of GPUs. Only used in non-distributed
|
78 |
+
training.
|
79 |
+
dist (bool, optional): Distributed training/test or not. Default: True.
|
80 |
+
shuffle (bool, optional): Whether to shuffle the data at every epoch.
|
81 |
+
Default: True.
|
82 |
+
round_up (bool, optional): Whether to round up the length of dataset by
|
83 |
+
adding extra samples to make it evenly divisible. Default: True.
|
84 |
+
persistent_workers (bool): If True, the data loader will not shutdown
|
85 |
+
the worker processes after a dataset has been consumed once.
|
86 |
+
This allows to maintain the workers Dataset instances alive.
|
87 |
+
The argument also has effect in PyTorch>=1.7.0.
|
88 |
+
Default: True
|
89 |
+
kwargs: any keyword argument to be used to initialize DataLoader
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
DataLoader: A PyTorch dataloader.
|
93 |
+
"""
|
94 |
+
rank, world_size = get_dist_info()
|
95 |
+
if dist:
|
96 |
+
sampler = DistributedSampler(
|
97 |
+
dataset, world_size, rank, shuffle=shuffle, round_up=round_up)
|
98 |
+
shuffle = False
|
99 |
+
batch_size = samples_per_gpu
|
100 |
+
num_workers = workers_per_gpu
|
101 |
+
else:
|
102 |
+
sampler = None
|
103 |
+
batch_size = num_gpus * samples_per_gpu
|
104 |
+
num_workers = num_gpus * workers_per_gpu
|
105 |
+
|
106 |
+
init_fn = partial(
|
107 |
+
worker_init_fn, num_workers=num_workers, rank=rank,
|
108 |
+
seed=seed) if seed is not None else None
|
109 |
+
|
110 |
+
data_loader = DataLoader(
|
111 |
+
dataset,
|
112 |
+
batch_size=batch_size,
|
113 |
+
sampler=sampler,
|
114 |
+
num_workers=num_workers,
|
115 |
+
pin_memory=False,
|
116 |
+
shuffle=shuffle,
|
117 |
+
worker_init_fn=init_fn,
|
118 |
+
persistent_workers=persistent_workers,
|
119 |
+
**kwargs)
|
120 |
+
|
121 |
+
return data_loader
|
122 |
+
|
123 |
+
|
124 |
+
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int):
|
125 |
+
"""Init random seed for each worker."""
|
126 |
+
# The seed of each worker equals to
|
127 |
+
# num_worker * rank + worker_id + user_seed
|
128 |
+
worker_seed = num_workers * rank + worker_id + seed
|
129 |
+
np.random.seed(worker_seed)
|
130 |
+
random.seed(worker_seed)
|
datasets/dataset.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.utils import data
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
from os.path import join as pjoin
|
6 |
+
import random
|
7 |
+
import codecs as cs
|
8 |
+
from tqdm import tqdm
|
9 |
+
|
10 |
+
|
11 |
+
class Text2MotionDataset(data.Dataset):
|
12 |
+
"""Dataset for Text2Motion generation task.
|
13 |
+
|
14 |
+
"""
|
15 |
+
def __init__(self, opt, mean, std, split_file, times=1, w_vectorizer=None, eval_mode=False):
|
16 |
+
self.opt = opt
|
17 |
+
self.max_length = 20
|
18 |
+
self.times = times
|
19 |
+
self.w_vectorizer = w_vectorizer
|
20 |
+
self.eval_mode = eval_mode
|
21 |
+
min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24
|
22 |
+
|
23 |
+
joints_num = opt.joints_num
|
24 |
+
|
25 |
+
data_dict = {}
|
26 |
+
id_list = []
|
27 |
+
with cs.open(split_file, 'r') as f:
|
28 |
+
for line in f.readlines():
|
29 |
+
id_list.append(line.strip())
|
30 |
+
|
31 |
+
new_name_list = []
|
32 |
+
length_list = []
|
33 |
+
for name in tqdm(id_list):
|
34 |
+
try:
|
35 |
+
motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
|
36 |
+
if (len(motion)) < min_motion_len or (len(motion) >= 200):
|
37 |
+
continue
|
38 |
+
text_data = []
|
39 |
+
flag = False
|
40 |
+
with cs.open(pjoin(opt.text_dir, name + '.txt')) as f:
|
41 |
+
for line in f.readlines():
|
42 |
+
text_dict = {}
|
43 |
+
line_split = line.strip().split('#')
|
44 |
+
caption = line_split[0]
|
45 |
+
tokens = line_split[1].split(' ')
|
46 |
+
f_tag = float(line_split[2])
|
47 |
+
to_tag = float(line_split[3])
|
48 |
+
f_tag = 0.0 if np.isnan(f_tag) else f_tag
|
49 |
+
to_tag = 0.0 if np.isnan(to_tag) else to_tag
|
50 |
+
|
51 |
+
text_dict['caption'] = caption
|
52 |
+
text_dict['tokens'] = tokens
|
53 |
+
if f_tag == 0.0 and to_tag == 0.0:
|
54 |
+
flag = True
|
55 |
+
text_data.append(text_dict)
|
56 |
+
else:
|
57 |
+
n_motion = motion[int(f_tag*20) : int(to_tag*20)]
|
58 |
+
if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
|
59 |
+
continue
|
60 |
+
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
|
61 |
+
while new_name in data_dict:
|
62 |
+
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
|
63 |
+
data_dict[new_name] = {'motion': n_motion,
|
64 |
+
'length': len(n_motion),
|
65 |
+
'text':[text_dict]}
|
66 |
+
new_name_list.append(new_name)
|
67 |
+
length_list.append(len(n_motion))
|
68 |
+
|
69 |
+
if flag:
|
70 |
+
data_dict[name] = {'motion': motion,
|
71 |
+
'length': len(motion),
|
72 |
+
'text':text_data}
|
73 |
+
new_name_list.append(name)
|
74 |
+
length_list.append(len(motion))
|
75 |
+
except:
|
76 |
+
# Some motion may not exist in KIT dataset
|
77 |
+
pass
|
78 |
+
|
79 |
+
|
80 |
+
name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
|
81 |
+
|
82 |
+
if opt.is_train:
|
83 |
+
# root_rot_velocity (B, seq_len, 1)
|
84 |
+
std[0:1] = std[0:1] / opt.feat_bias
|
85 |
+
# root_linear_velocity (B, seq_len, 2)
|
86 |
+
std[1:3] = std[1:3] / opt.feat_bias
|
87 |
+
# root_y (B, seq_len, 1)
|
88 |
+
std[3:4] = std[3:4] / opt.feat_bias
|
89 |
+
# ric_data (B, seq_len, (joint_num - 1)*3)
|
90 |
+
std[4: 4 + (joints_num - 1) * 3] = std[4: 4 + (joints_num - 1) * 3] / 1.0
|
91 |
+
# rot_data (B, seq_len, (joint_num - 1)*6)
|
92 |
+
std[4 + (joints_num - 1) * 3: 4 + (joints_num - 1) * 9] = std[4 + (joints_num - 1) * 3: 4 + (
|
93 |
+
joints_num - 1) * 9] / 1.0
|
94 |
+
# local_velocity (B, seq_len, joint_num*3)
|
95 |
+
std[4 + (joints_num - 1) * 9: 4 + (joints_num - 1) * 9 + joints_num * 3] = std[
|
96 |
+
4 + (joints_num - 1) * 9: 4 + (
|
97 |
+
joints_num - 1) * 9 + joints_num * 3] / 1.0
|
98 |
+
# foot contact (B, seq_len, 4)
|
99 |
+
std[4 + (joints_num - 1) * 9 + joints_num * 3:] = std[
|
100 |
+
4 + (joints_num - 1) * 9 + joints_num * 3:] / opt.feat_bias
|
101 |
+
|
102 |
+
assert 4 + (joints_num - 1) * 9 + joints_num * 3 + 4 == mean.shape[-1]
|
103 |
+
np.save(pjoin(opt.meta_dir, 'mean.npy'), mean)
|
104 |
+
np.save(pjoin(opt.meta_dir, 'std.npy'), std)
|
105 |
+
|
106 |
+
self.mean = mean
|
107 |
+
self.std = std
|
108 |
+
self.length_arr = np.array(length_list)
|
109 |
+
self.data_dict = data_dict
|
110 |
+
self.name_list = name_list
|
111 |
+
|
112 |
+
def inv_transform(self, data):
|
113 |
+
return data * self.std + self.mean
|
114 |
+
|
115 |
+
def real_len(self):
|
116 |
+
return len(self.data_dict)
|
117 |
+
|
118 |
+
def __len__(self):
|
119 |
+
return self.real_len() * self.times
|
120 |
+
|
121 |
+
def __getitem__(self, item):
|
122 |
+
idx = item % self.real_len()
|
123 |
+
data = self.data_dict[self.name_list[idx]]
|
124 |
+
motion, m_length, text_list = data['motion'], data['length'], data['text']
|
125 |
+
# Randomly select a caption
|
126 |
+
text_data = random.choice(text_list)
|
127 |
+
caption = text_data['caption']
|
128 |
+
|
129 |
+
max_motion_length = self.opt.max_motion_length
|
130 |
+
if m_length >= self.opt.max_motion_length:
|
131 |
+
idx = random.randint(0, len(motion) - max_motion_length)
|
132 |
+
motion = motion[idx: idx + max_motion_length]
|
133 |
+
else:
|
134 |
+
padding_len = max_motion_length - m_length
|
135 |
+
D = motion.shape[1]
|
136 |
+
padding_zeros = np.zeros((padding_len, D))
|
137 |
+
motion = np.concatenate((motion, padding_zeros), axis=0)
|
138 |
+
|
139 |
+
assert len(motion) == max_motion_length
|
140 |
+
"Z Normalization"
|
141 |
+
motion = (motion - self.mean) / self.std
|
142 |
+
|
143 |
+
if self.eval_mode:
|
144 |
+
tokens = text_data['tokens']
|
145 |
+
if len(tokens) < self.opt.max_text_len:
|
146 |
+
# pad with "unk"
|
147 |
+
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
|
148 |
+
sent_len = len(tokens)
|
149 |
+
tokens = tokens + ['unk/OTHER'] * (self.opt.max_text_len + 2 - sent_len)
|
150 |
+
else:
|
151 |
+
# crop
|
152 |
+
tokens = tokens[:self.opt.max_text_len]
|
153 |
+
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
|
154 |
+
sent_len = len(tokens)
|
155 |
+
pos_one_hots = []
|
156 |
+
word_embeddings = []
|
157 |
+
for token in tokens:
|
158 |
+
word_emb, pos_oh = self.w_vectorizer[token]
|
159 |
+
pos_one_hots.append(pos_oh[None, :])
|
160 |
+
word_embeddings.append(word_emb[None, :])
|
161 |
+
pos_one_hots = np.concatenate(pos_one_hots, axis=0)
|
162 |
+
word_embeddings = np.concatenate(word_embeddings, axis=0)
|
163 |
+
return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length
|
164 |
+
return caption, motion, m_length
|
datasets/evaluator.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from utils.word_vectorizer import WordVectorizer, POS_enumerator
|
3 |
+
from utils.get_opt import get_opt
|
4 |
+
from models import MotionTransformer
|
5 |
+
from torch.utils.data import Dataset, DataLoader
|
6 |
+
from os.path import join as pjoin
|
7 |
+
from tqdm import tqdm
|
8 |
+
import numpy as np
|
9 |
+
from .evaluator_models import *
|
10 |
+
import os
|
11 |
+
import codecs as cs
|
12 |
+
import random
|
13 |
+
from torch.utils.data._utils.collate import default_collate
|
14 |
+
|
15 |
+
|
16 |
+
class EvaluationDataset(Dataset):
|
17 |
+
|
18 |
+
def __init__(self, opt, trainer, dataset, w_vectorizer, mm_num_samples, mm_num_repeats):
|
19 |
+
assert mm_num_samples < len(dataset)
|
20 |
+
print(opt.model_dir)
|
21 |
+
|
22 |
+
dataloader = DataLoader(dataset, batch_size=1, num_workers=1, shuffle=True)
|
23 |
+
epoch, it = trainer.load(pjoin(opt.model_dir, opt.which_epoch + '.tar'))
|
24 |
+
|
25 |
+
generated_motion = []
|
26 |
+
min_mov_length = 10 if opt.dataset_name == 't2m' else 6
|
27 |
+
|
28 |
+
trainer.eval_mode()
|
29 |
+
trainer.to(opt.device)
|
30 |
+
|
31 |
+
# Pre-process all target captions
|
32 |
+
mm_generated_motions = []
|
33 |
+
mm_idxs = np.random.choice(len(dataset), mm_num_samples, replace=False)
|
34 |
+
mm_idxs = np.sort(mm_idxs)
|
35 |
+
all_caption = []
|
36 |
+
all_m_lens = []
|
37 |
+
all_data = []
|
38 |
+
with torch.no_grad():
|
39 |
+
for i, data in tqdm(enumerate(dataloader)):
|
40 |
+
word_emb, pos_ohot, caption, cap_lens, motions, m_lens, tokens = data
|
41 |
+
all_data.append(data)
|
42 |
+
tokens = tokens[0].split('_')
|
43 |
+
mm_num_now = len(mm_generated_motions)
|
44 |
+
is_mm = True if ((mm_num_now < mm_num_samples) and (i == mm_idxs[mm_num_now])) else False
|
45 |
+
repeat_times = mm_num_repeats if is_mm else 1
|
46 |
+
m_lens = max(m_lens // opt.unit_length * opt.unit_length, min_mov_length * opt.unit_length)
|
47 |
+
m_lens = min(m_lens, opt.max_motion_length)
|
48 |
+
if isinstance(m_lens, int):
|
49 |
+
m_lens = torch.LongTensor([m_lens]).to(opt.device)
|
50 |
+
else:
|
51 |
+
m_lens = m_lens.to(opt.device)
|
52 |
+
for t in range(repeat_times):
|
53 |
+
all_m_lens.append(m_lens)
|
54 |
+
all_caption.extend(caption)
|
55 |
+
if is_mm:
|
56 |
+
mm_generated_motions.append(0)
|
57 |
+
all_m_lens = torch.stack(all_m_lens)
|
58 |
+
|
59 |
+
# Generate all sequences
|
60 |
+
with torch.no_grad():
|
61 |
+
all_pred_motions = trainer.generate(all_caption, all_m_lens, opt.dim_pose)
|
62 |
+
|
63 |
+
cur_idx = 0
|
64 |
+
mm_generated_motions = []
|
65 |
+
with torch.no_grad():
|
66 |
+
for i, data_dummy in tqdm(enumerate(dataloader)):
|
67 |
+
data = all_data[i]
|
68 |
+
word_emb, pos_ohot, caption, cap_lens, motions, m_lens, tokens = data
|
69 |
+
tokens = tokens[0].split('_')
|
70 |
+
mm_num_now = len(mm_generated_motions)
|
71 |
+
is_mm = True if ((mm_num_now < mm_num_samples) and (i == mm_idxs[mm_num_now])) else False
|
72 |
+
repeat_times = mm_num_repeats if is_mm else 1
|
73 |
+
mm_motions = []
|
74 |
+
m_lens = max(m_lens // opt.unit_length * opt.unit_length, min_mov_length * opt.unit_length)
|
75 |
+
m_lens = min(m_lens, opt.max_motion_length)
|
76 |
+
if isinstance(m_lens, int):
|
77 |
+
m_lens = torch.LongTensor([m_lens]).to(opt.device)
|
78 |
+
else:
|
79 |
+
m_lens = m_lens.to(opt.device)
|
80 |
+
for t in range(repeat_times):
|
81 |
+
m_len = m_lens[0].item()
|
82 |
+
pred_motions = all_pred_motions[cur_idx][:m_lens[0].item()]
|
83 |
+
assert pred_motions.shape[0] == m_lens[0].item()
|
84 |
+
cur_idx += 1
|
85 |
+
if t == 0:
|
86 |
+
sub_dict = {'motion': pred_motions.cpu().numpy(),
|
87 |
+
'length': pred_motions.shape[0],
|
88 |
+
'caption': caption[0],
|
89 |
+
'cap_len': cap_lens[0].item(),
|
90 |
+
'tokens': tokens}
|
91 |
+
generated_motion.append(sub_dict)
|
92 |
+
|
93 |
+
if is_mm:
|
94 |
+
mm_motions.append({
|
95 |
+
'motion': pred_motions.cpu().numpy(),
|
96 |
+
'length': m_lens[0].item()
|
97 |
+
})
|
98 |
+
if is_mm:
|
99 |
+
mm_generated_motions.append({'caption': caption[0],
|
100 |
+
'tokens': tokens,
|
101 |
+
'cap_len': cap_lens[0].item(),
|
102 |
+
'mm_motions': mm_motions})
|
103 |
+
self.generated_motion = generated_motion
|
104 |
+
self.mm_generated_motion = mm_generated_motions
|
105 |
+
self.opt = opt
|
106 |
+
self.w_vectorizer = w_vectorizer
|
107 |
+
|
108 |
+
|
109 |
+
def __len__(self):
|
110 |
+
return len(self.generated_motion)
|
111 |
+
|
112 |
+
|
113 |
+
def __getitem__(self, item):
|
114 |
+
data = self.generated_motion[item]
|
115 |
+
motion, m_length, caption, tokens = data['motion'], data['length'], data['caption'], data['tokens']
|
116 |
+
sent_len = data['cap_len']
|
117 |
+
pos_one_hots = []
|
118 |
+
word_embeddings = []
|
119 |
+
for token in tokens:
|
120 |
+
word_emb, pos_oh = self.w_vectorizer[token]
|
121 |
+
pos_one_hots.append(pos_oh[None, :])
|
122 |
+
word_embeddings.append(word_emb[None, :])
|
123 |
+
pos_one_hots = np.concatenate(pos_one_hots, axis=0)
|
124 |
+
word_embeddings = np.concatenate(word_embeddings, axis=0)
|
125 |
+
|
126 |
+
if m_length < self.opt.max_motion_length:
|
127 |
+
motion = np.concatenate([motion,
|
128 |
+
np.zeros((self.opt.max_motion_length - m_length, motion.shape[1]))
|
129 |
+
], axis=0)
|
130 |
+
return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens)
|
131 |
+
|
132 |
+
|
133 |
+
def collate_fn(batch):
|
134 |
+
batch.sort(key=lambda x: x[3], reverse=True)
|
135 |
+
return default_collate(batch)
|
136 |
+
|
137 |
+
|
138 |
+
'''For use of training text motion matching model, and evaluations'''
|
139 |
+
class Text2MotionDatasetV2(Dataset):
|
140 |
+
def __init__(self, opt, mean, std, split_file, w_vectorizer):
|
141 |
+
self.opt = opt
|
142 |
+
self.w_vectorizer = w_vectorizer
|
143 |
+
self.max_length = 20
|
144 |
+
self.pointer = 0
|
145 |
+
self.max_motion_length = opt.max_motion_length
|
146 |
+
min_motion_len = 40 if self.opt.dataset_name =='t2m' else 24
|
147 |
+
|
148 |
+
data_dict = {}
|
149 |
+
id_list = []
|
150 |
+
with cs.open(split_file, 'r') as f:
|
151 |
+
for line in f.readlines():
|
152 |
+
id_list.append(line.strip())
|
153 |
+
|
154 |
+
new_name_list = []
|
155 |
+
length_list = []
|
156 |
+
for name in tqdm(id_list):
|
157 |
+
try:
|
158 |
+
motion = np.load(pjoin(opt.motion_dir, name + '.npy'))
|
159 |
+
if (len(motion)) < min_motion_len or (len(motion) >= 200):
|
160 |
+
continue
|
161 |
+
text_data = []
|
162 |
+
flag = False
|
163 |
+
with cs.open(pjoin(opt.text_dir, name + '.txt')) as f:
|
164 |
+
for line in f.readlines():
|
165 |
+
text_dict = {}
|
166 |
+
line_split = line.strip().split('#')
|
167 |
+
caption = line_split[0]
|
168 |
+
tokens = line_split[1].split(' ')
|
169 |
+
f_tag = float(line_split[2])
|
170 |
+
to_tag = float(line_split[3])
|
171 |
+
f_tag = 0.0 if np.isnan(f_tag) else f_tag
|
172 |
+
to_tag = 0.0 if np.isnan(to_tag) else to_tag
|
173 |
+
|
174 |
+
text_dict['caption'] = caption
|
175 |
+
text_dict['tokens'] = tokens
|
176 |
+
if f_tag == 0.0 and to_tag == 0.0:
|
177 |
+
flag = True
|
178 |
+
text_data.append(text_dict)
|
179 |
+
else:
|
180 |
+
try:
|
181 |
+
n_motion = motion[int(f_tag*20) : int(to_tag*20)]
|
182 |
+
if (len(n_motion)) < min_motion_len or (len(n_motion) >= 200):
|
183 |
+
continue
|
184 |
+
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
|
185 |
+
while new_name in data_dict:
|
186 |
+
new_name = random.choice('ABCDEFGHIJKLMNOPQRSTUVW') + '_' + name
|
187 |
+
data_dict[new_name] = {'motion': n_motion,
|
188 |
+
'length': len(n_motion),
|
189 |
+
'text':[text_dict]}
|
190 |
+
new_name_list.append(new_name)
|
191 |
+
length_list.append(len(n_motion))
|
192 |
+
except:
|
193 |
+
print(line_split)
|
194 |
+
print(line_split[2], line_split[3], f_tag, to_tag, name)
|
195 |
+
# break
|
196 |
+
|
197 |
+
if flag:
|
198 |
+
data_dict[name] = {'motion': motion,
|
199 |
+
'length': len(motion),
|
200 |
+
'text': text_data}
|
201 |
+
new_name_list.append(name)
|
202 |
+
length_list.append(len(motion))
|
203 |
+
except:
|
204 |
+
pass
|
205 |
+
|
206 |
+
name_list, length_list = zip(*sorted(zip(new_name_list, length_list), key=lambda x: x[1]))
|
207 |
+
|
208 |
+
self.mean = mean
|
209 |
+
self.std = std
|
210 |
+
self.length_arr = np.array(length_list)
|
211 |
+
self.data_dict = data_dict
|
212 |
+
self.name_list = name_list
|
213 |
+
self.reset_max_len(self.max_length)
|
214 |
+
|
215 |
+
def reset_max_len(self, length):
|
216 |
+
assert length <= self.max_motion_length
|
217 |
+
self.pointer = np.searchsorted(self.length_arr, length)
|
218 |
+
print("Pointer Pointing at %d"%self.pointer)
|
219 |
+
self.max_length = length
|
220 |
+
|
221 |
+
def inv_transform(self, data):
|
222 |
+
return data * self.std + self.mean
|
223 |
+
|
224 |
+
def __len__(self):
|
225 |
+
return len(self.data_dict) - self.pointer
|
226 |
+
|
227 |
+
def __getitem__(self, item):
|
228 |
+
idx = self.pointer + item
|
229 |
+
data = self.data_dict[self.name_list[idx]]
|
230 |
+
motion, m_length, text_list = data['motion'], data['length'], data['text']
|
231 |
+
# Randomly select a caption
|
232 |
+
text_data = random.choice(text_list)
|
233 |
+
caption, tokens = text_data['caption'], text_data['tokens']
|
234 |
+
|
235 |
+
if len(tokens) < self.opt.max_text_len:
|
236 |
+
# pad with "unk"
|
237 |
+
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
|
238 |
+
sent_len = len(tokens)
|
239 |
+
tokens = tokens + ['unk/OTHER'] * (self.opt.max_text_len + 2 - sent_len)
|
240 |
+
else:
|
241 |
+
# crop
|
242 |
+
tokens = tokens[:self.opt.max_text_len]
|
243 |
+
tokens = ['sos/OTHER'] + tokens + ['eos/OTHER']
|
244 |
+
sent_len = len(tokens)
|
245 |
+
pos_one_hots = []
|
246 |
+
word_embeddings = []
|
247 |
+
for token in tokens:
|
248 |
+
word_emb, pos_oh = self.w_vectorizer[token]
|
249 |
+
pos_one_hots.append(pos_oh[None, :])
|
250 |
+
word_embeddings.append(word_emb[None, :])
|
251 |
+
pos_one_hots = np.concatenate(pos_one_hots, axis=0)
|
252 |
+
word_embeddings = np.concatenate(word_embeddings, axis=0)
|
253 |
+
|
254 |
+
# Crop the motions in to times of 4, and introduce small variations
|
255 |
+
if self.opt.unit_length < 10:
|
256 |
+
coin2 = np.random.choice(['single', 'single', 'double'])
|
257 |
+
else:
|
258 |
+
coin2 = 'single'
|
259 |
+
|
260 |
+
if coin2 == 'double':
|
261 |
+
m_length = (m_length // self.opt.unit_length - 1) * self.opt.unit_length
|
262 |
+
elif coin2 == 'single':
|
263 |
+
m_length = (m_length // self.opt.unit_length) * self.opt.unit_length
|
264 |
+
idx = random.randint(0, len(motion) - m_length)
|
265 |
+
motion = motion[idx:idx+m_length]
|
266 |
+
|
267 |
+
"Z Normalization"
|
268 |
+
motion = (motion - self.mean) / self.std
|
269 |
+
|
270 |
+
if m_length < self.max_motion_length:
|
271 |
+
motion = np.concatenate([motion,
|
272 |
+
np.zeros((self.max_motion_length - m_length, motion.shape[1]))
|
273 |
+
], axis=0)
|
274 |
+
return word_embeddings, pos_one_hots, caption, sent_len, motion, m_length, '_'.join(tokens)
|
275 |
+
|
276 |
+
|
277 |
+
def get_dataset_motion_loader(opt_path, batch_size, device):
|
278 |
+
opt = get_opt(opt_path, device)
|
279 |
+
|
280 |
+
# Configurations of T2M dataset and KIT dataset is almost the same
|
281 |
+
if opt.dataset_name == 't2m' or opt.dataset_name == 'kit':
|
282 |
+
print('Loading dataset %s ...' % opt.dataset_name)
|
283 |
+
|
284 |
+
mean = np.load(pjoin(opt.meta_dir, 'mean.npy'))
|
285 |
+
std = np.load(pjoin(opt.meta_dir, 'std.npy'))
|
286 |
+
|
287 |
+
w_vectorizer = WordVectorizer('./data/glove', 'our_vab')
|
288 |
+
split_file = pjoin(opt.data_root, 'test.txt')
|
289 |
+
dataset = Text2MotionDatasetV2(opt, mean, std, split_file, w_vectorizer)
|
290 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=4, drop_last=True,
|
291 |
+
collate_fn=collate_fn, shuffle=True)
|
292 |
+
else:
|
293 |
+
raise KeyError('Dataset not Recognized !!')
|
294 |
+
|
295 |
+
print('Ground Truth Dataset Loading Completed!!!')
|
296 |
+
return dataloader, dataset
|
297 |
+
|
298 |
+
|
299 |
+
class MMGeneratedDataset(Dataset):
|
300 |
+
def __init__(self, opt, motion_dataset, w_vectorizer):
|
301 |
+
self.opt = opt
|
302 |
+
self.dataset = motion_dataset.mm_generated_motion
|
303 |
+
self.w_vectorizer = w_vectorizer
|
304 |
+
|
305 |
+
def __len__(self):
|
306 |
+
return len(self.dataset)
|
307 |
+
|
308 |
+
def __getitem__(self, item):
|
309 |
+
data = self.dataset[item]
|
310 |
+
mm_motions = data['mm_motions']
|
311 |
+
m_lens = []
|
312 |
+
motions = []
|
313 |
+
for mm_motion in mm_motions:
|
314 |
+
m_lens.append(mm_motion['length'])
|
315 |
+
motion = mm_motion['motion']
|
316 |
+
if len(motion) < self.opt.max_motion_length:
|
317 |
+
motion = np.concatenate([motion,
|
318 |
+
np.zeros((self.opt.max_motion_length - len(motion), motion.shape[1]))
|
319 |
+
], axis=0)
|
320 |
+
motion = motion[None, :]
|
321 |
+
motions.append(motion)
|
322 |
+
m_lens = np.array(m_lens, dtype=np.int)
|
323 |
+
motions = np.concatenate(motions, axis=0)
|
324 |
+
sort_indx = np.argsort(m_lens)[::-1].copy()
|
325 |
+
# print(m_lens)
|
326 |
+
# print(sort_indx)
|
327 |
+
# print(m_lens[sort_indx])
|
328 |
+
m_lens = m_lens[sort_indx]
|
329 |
+
motions = motions[sort_indx]
|
330 |
+
return motions, m_lens
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
def get_motion_loader(opt, batch_size, trainer, ground_truth_dataset, mm_num_samples, mm_num_repeats):
|
335 |
+
|
336 |
+
# Currently the configurations of two datasets are almost the same
|
337 |
+
if opt.dataset_name == 't2m' or opt.dataset_name == 'kit':
|
338 |
+
w_vectorizer = WordVectorizer('./data/glove', 'our_vab')
|
339 |
+
else:
|
340 |
+
raise KeyError('Dataset not recognized!!')
|
341 |
+
print('Generating %s ...' % opt.name)
|
342 |
+
|
343 |
+
dataset = EvaluationDataset(opt, trainer, ground_truth_dataset, w_vectorizer, mm_num_samples, mm_num_repeats)
|
344 |
+
mm_dataset = MMGeneratedDataset(opt, dataset, w_vectorizer)
|
345 |
+
|
346 |
+
motion_loader = DataLoader(dataset, batch_size=batch_size, collate_fn=collate_fn, drop_last=True, num_workers=4)
|
347 |
+
mm_motion_loader = DataLoader(mm_dataset, batch_size=1, num_workers=1)
|
348 |
+
|
349 |
+
print('Generated Dataset Loading Completed!!!')
|
350 |
+
|
351 |
+
return motion_loader, mm_motion_loader
|
352 |
+
|
353 |
+
|
354 |
+
def build_models(opt):
|
355 |
+
movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent)
|
356 |
+
text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word,
|
357 |
+
pos_size=opt.dim_pos_ohot,
|
358 |
+
hidden_size=opt.dim_text_hidden,
|
359 |
+
output_size=opt.dim_coemb_hidden,
|
360 |
+
device=opt.device)
|
361 |
+
|
362 |
+
motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent,
|
363 |
+
hidden_size=opt.dim_motion_hidden,
|
364 |
+
output_size=opt.dim_coemb_hidden,
|
365 |
+
device=opt.device)
|
366 |
+
|
367 |
+
checkpoint = torch.load(pjoin('data/pretrained_models', opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'),
|
368 |
+
map_location=opt.device)
|
369 |
+
movement_enc.load_state_dict(checkpoint['movement_encoder'])
|
370 |
+
text_enc.load_state_dict(checkpoint['text_encoder'])
|
371 |
+
motion_enc.load_state_dict(checkpoint['motion_encoder'])
|
372 |
+
print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
|
373 |
+
return text_enc, motion_enc, movement_enc
|
374 |
+
|
375 |
+
|
376 |
+
class EvaluatorModelWrapper(object):
|
377 |
+
|
378 |
+
def __init__(self, opt):
|
379 |
+
|
380 |
+
if opt.dataset_name == 't2m':
|
381 |
+
opt.dim_pose = 263
|
382 |
+
elif opt.dataset_name == 'kit':
|
383 |
+
opt.dim_pose = 251
|
384 |
+
else:
|
385 |
+
raise KeyError('Dataset not Recognized!!!')
|
386 |
+
|
387 |
+
opt.dim_word = 300
|
388 |
+
opt.max_motion_length = 196
|
389 |
+
opt.dim_pos_ohot = len(POS_enumerator)
|
390 |
+
opt.dim_motion_hidden = 1024
|
391 |
+
opt.max_text_len = 20
|
392 |
+
opt.dim_text_hidden = 512
|
393 |
+
opt.dim_coemb_hidden = 512
|
394 |
+
|
395 |
+
self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt)
|
396 |
+
self.opt = opt
|
397 |
+
self.device = opt.device
|
398 |
+
|
399 |
+
self.text_encoder.to(opt.device)
|
400 |
+
self.motion_encoder.to(opt.device)
|
401 |
+
self.movement_encoder.to(opt.device)
|
402 |
+
|
403 |
+
self.text_encoder.eval()
|
404 |
+
self.motion_encoder.eval()
|
405 |
+
self.movement_encoder.eval()
|
406 |
+
|
407 |
+
# Please note that the results does not following the order of inputs
|
408 |
+
def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
|
409 |
+
with torch.no_grad():
|
410 |
+
word_embs = word_embs.detach().to(self.device).float()
|
411 |
+
pos_ohot = pos_ohot.detach().to(self.device).float()
|
412 |
+
motions = motions.detach().to(self.device).float()
|
413 |
+
|
414 |
+
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
|
415 |
+
motions = motions[align_idx]
|
416 |
+
m_lens = m_lens[align_idx]
|
417 |
+
|
418 |
+
'''Movement Encoding'''
|
419 |
+
movements = self.movement_encoder(motions[..., :-4]).detach()
|
420 |
+
m_lens = m_lens // self.opt.unit_length
|
421 |
+
motion_embedding = self.motion_encoder(movements, m_lens)
|
422 |
+
|
423 |
+
'''Text Encoding'''
|
424 |
+
text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
|
425 |
+
text_embedding = text_embedding[align_idx]
|
426 |
+
return text_embedding, motion_embedding
|
427 |
+
|
428 |
+
# Please note that the results does not following the order of inputs
|
429 |
+
def get_motion_embeddings(self, motions, m_lens):
|
430 |
+
with torch.no_grad():
|
431 |
+
motions = motions.detach().to(self.device).float()
|
432 |
+
|
433 |
+
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
|
434 |
+
motions = motions[align_idx]
|
435 |
+
m_lens = m_lens[align_idx]
|
436 |
+
|
437 |
+
'''Movement Encoding'''
|
438 |
+
movements = self.movement_encoder(motions[..., :-4]).detach()
|
439 |
+
m_lens = m_lens // self.opt.unit_length
|
440 |
+
motion_embedding = self.motion_encoder(movements, m_lens)
|
441 |
+
return motion_embedding
|
datasets/evaluator_models.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
import time
|
5 |
+
import math
|
6 |
+
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
|
7 |
+
# from networks.layers import *
|
8 |
+
import torch.nn.functional as F
|
9 |
+
|
10 |
+
|
11 |
+
class ContrastiveLoss(torch.nn.Module):
|
12 |
+
"""
|
13 |
+
Contrastive loss function.
|
14 |
+
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
|
15 |
+
"""
|
16 |
+
def __init__(self, margin=3.0):
|
17 |
+
super(ContrastiveLoss, self).__init__()
|
18 |
+
self.margin = margin
|
19 |
+
|
20 |
+
def forward(self, output1, output2, label):
|
21 |
+
euclidean_distance = F.pairwise_distance(output1, output2, keepdim=True)
|
22 |
+
loss_contrastive = torch.mean((1-label) * torch.pow(euclidean_distance, 2) +
|
23 |
+
(label) * torch.pow(torch.clamp(self.margin - euclidean_distance, min=0.0), 2))
|
24 |
+
return loss_contrastive
|
25 |
+
|
26 |
+
|
27 |
+
def init_weight(m):
|
28 |
+
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
|
29 |
+
nn.init.xavier_normal_(m.weight)
|
30 |
+
# m.bias.data.fill_(0.01)
|
31 |
+
if m.bias is not None:
|
32 |
+
nn.init.constant_(m.bias, 0)
|
33 |
+
|
34 |
+
|
35 |
+
def reparameterize(mu, logvar):
|
36 |
+
s_var = logvar.mul(0.5).exp_()
|
37 |
+
eps = s_var.data.new(s_var.size()).normal_()
|
38 |
+
return eps.mul(s_var).add_(mu)
|
39 |
+
|
40 |
+
|
41 |
+
# batch_size, dimension and position
|
42 |
+
# output: (batch_size, dim)
|
43 |
+
def positional_encoding(batch_size, dim, pos):
|
44 |
+
assert batch_size == pos.shape[0]
|
45 |
+
positions_enc = np.array([
|
46 |
+
[pos[j] / np.power(10000, (i-i%2)/dim) for i in range(dim)]
|
47 |
+
for j in range(batch_size)
|
48 |
+
], dtype=np.float32)
|
49 |
+
positions_enc[:, 0::2] = np.sin(positions_enc[:, 0::2])
|
50 |
+
positions_enc[:, 1::2] = np.cos(positions_enc[:, 1::2])
|
51 |
+
return torch.from_numpy(positions_enc).float()
|
52 |
+
|
53 |
+
|
54 |
+
def get_padding_mask(batch_size, seq_len, cap_lens):
|
55 |
+
cap_lens = cap_lens.data.tolist()
|
56 |
+
mask_2d = torch.ones((batch_size, seq_len, seq_len), dtype=torch.float32)
|
57 |
+
for i, cap_len in enumerate(cap_lens):
|
58 |
+
mask_2d[i, :, :cap_len] = 0
|
59 |
+
return mask_2d.bool(), 1 - mask_2d[:, :, 0].clone()
|
60 |
+
|
61 |
+
|
62 |
+
class PositionalEncoding(nn.Module):
|
63 |
+
|
64 |
+
def __init__(self, d_model, max_len=300):
|
65 |
+
super(PositionalEncoding, self).__init__()
|
66 |
+
|
67 |
+
pe = torch.zeros(max_len, d_model)
|
68 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
69 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
70 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
71 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
72 |
+
# pe = pe.unsqueeze(0).transpose(0, 1)
|
73 |
+
self.register_buffer('pe', pe)
|
74 |
+
|
75 |
+
def forward(self, pos):
|
76 |
+
return self.pe[pos]
|
77 |
+
|
78 |
+
|
79 |
+
class MovementConvEncoder(nn.Module):
|
80 |
+
def __init__(self, input_size, hidden_size, output_size):
|
81 |
+
super(MovementConvEncoder, self).__init__()
|
82 |
+
self.main = nn.Sequential(
|
83 |
+
nn.Conv1d(input_size, hidden_size, 4, 2, 1),
|
84 |
+
nn.Dropout(0.2, inplace=True),
|
85 |
+
nn.LeakyReLU(0.2, inplace=True),
|
86 |
+
nn.Conv1d(hidden_size, output_size, 4, 2, 1),
|
87 |
+
nn.Dropout(0.2, inplace=True),
|
88 |
+
nn.LeakyReLU(0.2, inplace=True),
|
89 |
+
)
|
90 |
+
self.out_net = nn.Linear(output_size, output_size)
|
91 |
+
self.main.apply(init_weight)
|
92 |
+
self.out_net.apply(init_weight)
|
93 |
+
|
94 |
+
def forward(self, inputs):
|
95 |
+
inputs = inputs.permute(0, 2, 1)
|
96 |
+
outputs = self.main(inputs).permute(0, 2, 1)
|
97 |
+
# print(outputs.shape)
|
98 |
+
return self.out_net(outputs)
|
99 |
+
|
100 |
+
|
101 |
+
class MovementConvDecoder(nn.Module):
|
102 |
+
def __init__(self, input_size, hidden_size, output_size):
|
103 |
+
super(MovementConvDecoder, self).__init__()
|
104 |
+
self.main = nn.Sequential(
|
105 |
+
nn.ConvTranspose1d(input_size, hidden_size, 4, 2, 1),
|
106 |
+
# nn.Dropout(0.2, inplace=True),
|
107 |
+
nn.LeakyReLU(0.2, inplace=True),
|
108 |
+
nn.ConvTranspose1d(hidden_size, output_size, 4, 2, 1),
|
109 |
+
# nn.Dropout(0.2, inplace=True),
|
110 |
+
nn.LeakyReLU(0.2, inplace=True),
|
111 |
+
)
|
112 |
+
self.out_net = nn.Linear(output_size, output_size)
|
113 |
+
|
114 |
+
self.main.apply(init_weight)
|
115 |
+
self.out_net.apply(init_weight)
|
116 |
+
|
117 |
+
def forward(self, inputs):
|
118 |
+
inputs = inputs.permute(0, 2, 1)
|
119 |
+
outputs = self.main(inputs).permute(0, 2, 1)
|
120 |
+
return self.out_net(outputs)
|
121 |
+
|
122 |
+
|
123 |
+
class TextVAEDecoder(nn.Module):
|
124 |
+
def __init__(self, text_size, input_size, output_size, hidden_size, n_layers):
|
125 |
+
super(TextVAEDecoder, self).__init__()
|
126 |
+
self.input_size = input_size
|
127 |
+
self.output_size = output_size
|
128 |
+
self.hidden_size = hidden_size
|
129 |
+
self.n_layers = n_layers
|
130 |
+
self.emb = nn.Sequential(
|
131 |
+
nn.Linear(input_size, hidden_size),
|
132 |
+
nn.LayerNorm(hidden_size),
|
133 |
+
nn.LeakyReLU(0.2, inplace=True))
|
134 |
+
|
135 |
+
self.z2init = nn.Linear(text_size, hidden_size * n_layers)
|
136 |
+
self.gru = nn.ModuleList([nn.GRUCell(hidden_size, hidden_size) for i in range(self.n_layers)])
|
137 |
+
self.positional_encoder = PositionalEncoding(hidden_size)
|
138 |
+
|
139 |
+
|
140 |
+
self.output = nn.Sequential(
|
141 |
+
nn.Linear(hidden_size, hidden_size),
|
142 |
+
nn.LayerNorm(hidden_size),
|
143 |
+
nn.LeakyReLU(0.2, inplace=True),
|
144 |
+
nn.Linear(hidden_size, output_size)
|
145 |
+
)
|
146 |
+
|
147 |
+
#
|
148 |
+
# self.output = nn.Sequential(
|
149 |
+
# nn.Linear(hidden_size, hidden_size),
|
150 |
+
# nn.LayerNorm(hidden_size),
|
151 |
+
# nn.LeakyReLU(0.2, inplace=True),
|
152 |
+
# nn.Linear(hidden_size, output_size-4)
|
153 |
+
# )
|
154 |
+
|
155 |
+
# self.contact_net = nn.Sequential(
|
156 |
+
# nn.Linear(output_size-4, 64),
|
157 |
+
# nn.LayerNorm(64),
|
158 |
+
# nn.LeakyReLU(0.2, inplace=True),
|
159 |
+
# nn.Linear(64, 4)
|
160 |
+
# )
|
161 |
+
|
162 |
+
self.output.apply(init_weight)
|
163 |
+
self.emb.apply(init_weight)
|
164 |
+
self.z2init.apply(init_weight)
|
165 |
+
# self.contact_net.apply(init_weight)
|
166 |
+
|
167 |
+
def get_init_hidden(self, latent):
|
168 |
+
hidden = self.z2init(latent)
|
169 |
+
hidden = torch.split(hidden, self.hidden_size, dim=-1)
|
170 |
+
return list(hidden)
|
171 |
+
|
172 |
+
def forward(self, inputs, last_pred, hidden, p):
|
173 |
+
h_in = self.emb(inputs)
|
174 |
+
pos_enc = self.positional_encoder(p).to(inputs.device).detach()
|
175 |
+
h_in = h_in + pos_enc
|
176 |
+
for i in range(self.n_layers):
|
177 |
+
# print(h_in.shape)
|
178 |
+
hidden[i] = self.gru[i](h_in, hidden[i])
|
179 |
+
h_in = hidden[i]
|
180 |
+
pose_pred = self.output(h_in)
|
181 |
+
# pose_pred = self.output(h_in) + last_pred.detach()
|
182 |
+
# contact = self.contact_net(pose_pred)
|
183 |
+
# return torch.cat([pose_pred, contact], dim=-1), hidden
|
184 |
+
return pose_pred, hidden
|
185 |
+
|
186 |
+
|
187 |
+
class TextDecoder(nn.Module):
|
188 |
+
def __init__(self, text_size, input_size, output_size, hidden_size, n_layers):
|
189 |
+
super(TextDecoder, self).__init__()
|
190 |
+
self.input_size = input_size
|
191 |
+
self.output_size = output_size
|
192 |
+
self.hidden_size = hidden_size
|
193 |
+
self.n_layers = n_layers
|
194 |
+
self.emb = nn.Sequential(
|
195 |
+
nn.Linear(input_size, hidden_size),
|
196 |
+
nn.LayerNorm(hidden_size),
|
197 |
+
nn.LeakyReLU(0.2, inplace=True))
|
198 |
+
|
199 |
+
self.gru = nn.ModuleList([nn.GRUCell(hidden_size, hidden_size) for i in range(self.n_layers)])
|
200 |
+
self.z2init = nn.Linear(text_size, hidden_size * n_layers)
|
201 |
+
self.positional_encoder = PositionalEncoding(hidden_size)
|
202 |
+
|
203 |
+
self.mu_net = nn.Linear(hidden_size, output_size)
|
204 |
+
self.logvar_net = nn.Linear(hidden_size, output_size)
|
205 |
+
|
206 |
+
self.emb.apply(init_weight)
|
207 |
+
self.z2init.apply(init_weight)
|
208 |
+
self.mu_net.apply(init_weight)
|
209 |
+
self.logvar_net.apply(init_weight)
|
210 |
+
|
211 |
+
def get_init_hidden(self, latent):
|
212 |
+
|
213 |
+
hidden = self.z2init(latent)
|
214 |
+
hidden = torch.split(hidden, self.hidden_size, dim=-1)
|
215 |
+
|
216 |
+
return list(hidden)
|
217 |
+
|
218 |
+
def forward(self, inputs, hidden, p):
|
219 |
+
# print(inputs.shape)
|
220 |
+
x_in = self.emb(inputs)
|
221 |
+
pos_enc = self.positional_encoder(p).to(inputs.device).detach()
|
222 |
+
x_in = x_in + pos_enc
|
223 |
+
|
224 |
+
for i in range(self.n_layers):
|
225 |
+
hidden[i] = self.gru[i](x_in, hidden[i])
|
226 |
+
h_in = hidden[i]
|
227 |
+
mu = self.mu_net(h_in)
|
228 |
+
logvar = self.logvar_net(h_in)
|
229 |
+
z = reparameterize(mu, logvar)
|
230 |
+
return z, mu, logvar, hidden
|
231 |
+
|
232 |
+
class AttLayer(nn.Module):
|
233 |
+
def __init__(self, query_dim, key_dim, value_dim):
|
234 |
+
super(AttLayer, self).__init__()
|
235 |
+
self.W_q = nn.Linear(query_dim, value_dim)
|
236 |
+
self.W_k = nn.Linear(key_dim, value_dim, bias=False)
|
237 |
+
self.W_v = nn.Linear(key_dim, value_dim)
|
238 |
+
|
239 |
+
self.softmax = nn.Softmax(dim=1)
|
240 |
+
self.dim = value_dim
|
241 |
+
|
242 |
+
self.W_q.apply(init_weight)
|
243 |
+
self.W_k.apply(init_weight)
|
244 |
+
self.W_v.apply(init_weight)
|
245 |
+
|
246 |
+
def forward(self, query, key_mat):
|
247 |
+
'''
|
248 |
+
query (batch, query_dim)
|
249 |
+
key (batch, seq_len, key_dim)
|
250 |
+
'''
|
251 |
+
# print(query.shape)
|
252 |
+
query_vec = self.W_q(query).unsqueeze(-1) # (batch, value_dim, 1)
|
253 |
+
val_set = self.W_v(key_mat) # (batch, seq_len, value_dim)
|
254 |
+
key_set = self.W_k(key_mat) # (batch, seq_len, value_dim)
|
255 |
+
|
256 |
+
weights = torch.matmul(key_set, query_vec) / np.sqrt(self.dim)
|
257 |
+
|
258 |
+
co_weights = self.softmax(weights) # (batch, seq_len, 1)
|
259 |
+
values = val_set * co_weights # (batch, seq_len, value_dim)
|
260 |
+
pred = values.sum(dim=1) # (batch, value_dim)
|
261 |
+
return pred, co_weights
|
262 |
+
|
263 |
+
def short_cut(self, querys, keys):
|
264 |
+
return self.W_q(querys), self.W_k(keys)
|
265 |
+
|
266 |
+
|
267 |
+
class TextEncoderBiGRU(nn.Module):
|
268 |
+
def __init__(self, word_size, pos_size, hidden_size, device):
|
269 |
+
super(TextEncoderBiGRU, self).__init__()
|
270 |
+
self.device = device
|
271 |
+
|
272 |
+
self.pos_emb = nn.Linear(pos_size, word_size)
|
273 |
+
self.input_emb = nn.Linear(word_size, hidden_size)
|
274 |
+
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
275 |
+
# self.linear2 = nn.Linear(hidden_size, output_size)
|
276 |
+
|
277 |
+
self.input_emb.apply(init_weight)
|
278 |
+
self.pos_emb.apply(init_weight)
|
279 |
+
# self.linear2.apply(init_weight)
|
280 |
+
# self.batch_size = batch_size
|
281 |
+
self.hidden_size = hidden_size
|
282 |
+
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
|
283 |
+
|
284 |
+
# input(batch_size, seq_len, dim)
|
285 |
+
def forward(self, word_embs, pos_onehot, cap_lens):
|
286 |
+
num_samples = word_embs.shape[0]
|
287 |
+
|
288 |
+
pos_embs = self.pos_emb(pos_onehot)
|
289 |
+
inputs = word_embs + pos_embs
|
290 |
+
input_embs = self.input_emb(inputs)
|
291 |
+
hidden = self.hidden.repeat(1, num_samples, 1)
|
292 |
+
|
293 |
+
cap_lens = cap_lens.data.tolist()
|
294 |
+
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
|
295 |
+
|
296 |
+
gru_seq, gru_last = self.gru(emb, hidden)
|
297 |
+
|
298 |
+
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
|
299 |
+
gru_seq = pad_packed_sequence(gru_seq, batch_first=True)[0]
|
300 |
+
forward_seq = gru_seq[..., :self.hidden_size]
|
301 |
+
backward_seq = gru_seq[..., self.hidden_size:].clone()
|
302 |
+
|
303 |
+
# Concate the forward and backward word embeddings
|
304 |
+
for i, length in enumerate(cap_lens):
|
305 |
+
backward_seq[i:i+1, :length] = torch.flip(backward_seq[i:i+1, :length].clone(), dims=[1])
|
306 |
+
gru_seq = torch.cat([forward_seq, backward_seq], dim=-1)
|
307 |
+
|
308 |
+
return gru_seq, gru_last
|
309 |
+
|
310 |
+
|
311 |
+
class TextEncoderBiGRUCo(nn.Module):
|
312 |
+
def __init__(self, word_size, pos_size, hidden_size, output_size, device):
|
313 |
+
super(TextEncoderBiGRUCo, self).__init__()
|
314 |
+
self.device = device
|
315 |
+
|
316 |
+
self.pos_emb = nn.Linear(pos_size, word_size)
|
317 |
+
self.input_emb = nn.Linear(word_size, hidden_size)
|
318 |
+
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
319 |
+
self.output_net = nn.Sequential(
|
320 |
+
nn.Linear(hidden_size * 2, hidden_size),
|
321 |
+
nn.LayerNorm(hidden_size),
|
322 |
+
nn.LeakyReLU(0.2, inplace=True),
|
323 |
+
nn.Linear(hidden_size, output_size)
|
324 |
+
)
|
325 |
+
|
326 |
+
self.input_emb.apply(init_weight)
|
327 |
+
self.pos_emb.apply(init_weight)
|
328 |
+
self.output_net.apply(init_weight)
|
329 |
+
# self.linear2.apply(init_weight)
|
330 |
+
# self.batch_size = batch_size
|
331 |
+
self.hidden_size = hidden_size
|
332 |
+
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
|
333 |
+
|
334 |
+
# input(batch_size, seq_len, dim)
|
335 |
+
def forward(self, word_embs, pos_onehot, cap_lens):
|
336 |
+
num_samples = word_embs.shape[0]
|
337 |
+
|
338 |
+
pos_embs = self.pos_emb(pos_onehot)
|
339 |
+
inputs = word_embs + pos_embs
|
340 |
+
input_embs = self.input_emb(inputs)
|
341 |
+
hidden = self.hidden.repeat(1, num_samples, 1)
|
342 |
+
|
343 |
+
cap_lens = cap_lens.data.tolist()
|
344 |
+
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
|
345 |
+
|
346 |
+
gru_seq, gru_last = self.gru(emb, hidden)
|
347 |
+
|
348 |
+
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
|
349 |
+
|
350 |
+
return self.output_net(gru_last)
|
351 |
+
|
352 |
+
|
353 |
+
class MotionEncoderBiGRUCo(nn.Module):
|
354 |
+
def __init__(self, input_size, hidden_size, output_size, device):
|
355 |
+
super(MotionEncoderBiGRUCo, self).__init__()
|
356 |
+
self.device = device
|
357 |
+
|
358 |
+
self.input_emb = nn.Linear(input_size, hidden_size)
|
359 |
+
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
360 |
+
self.output_net = nn.Sequential(
|
361 |
+
nn.Linear(hidden_size*2, hidden_size),
|
362 |
+
nn.LayerNorm(hidden_size),
|
363 |
+
nn.LeakyReLU(0.2, inplace=True),
|
364 |
+
nn.Linear(hidden_size, output_size)
|
365 |
+
)
|
366 |
+
|
367 |
+
self.input_emb.apply(init_weight)
|
368 |
+
self.output_net.apply(init_weight)
|
369 |
+
self.hidden_size = hidden_size
|
370 |
+
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
|
371 |
+
|
372 |
+
# input(batch_size, seq_len, dim)
|
373 |
+
def forward(self, inputs, m_lens):
|
374 |
+
num_samples = inputs.shape[0]
|
375 |
+
|
376 |
+
input_embs = self.input_emb(inputs)
|
377 |
+
hidden = self.hidden.repeat(1, num_samples, 1)
|
378 |
+
|
379 |
+
cap_lens = m_lens.data.tolist()
|
380 |
+
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
|
381 |
+
|
382 |
+
gru_seq, gru_last = self.gru(emb, hidden)
|
383 |
+
|
384 |
+
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
|
385 |
+
|
386 |
+
return self.output_net(gru_last)
|
387 |
+
|
388 |
+
|
389 |
+
class MotionLenEstimatorBiGRU(nn.Module):
|
390 |
+
def __init__(self, word_size, pos_size, hidden_size, output_size):
|
391 |
+
super(MotionLenEstimatorBiGRU, self).__init__()
|
392 |
+
|
393 |
+
self.pos_emb = nn.Linear(pos_size, word_size)
|
394 |
+
self.input_emb = nn.Linear(word_size, hidden_size)
|
395 |
+
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
396 |
+
nd = 512
|
397 |
+
self.output = nn.Sequential(
|
398 |
+
nn.Linear(hidden_size*2, nd),
|
399 |
+
nn.LayerNorm(nd),
|
400 |
+
nn.LeakyReLU(0.2, inplace=True),
|
401 |
+
|
402 |
+
nn.Linear(nd, nd // 2),
|
403 |
+
nn.LayerNorm(nd // 2),
|
404 |
+
nn.LeakyReLU(0.2, inplace=True),
|
405 |
+
|
406 |
+
nn.Linear(nd // 2, nd // 4),
|
407 |
+
nn.LayerNorm(nd // 4),
|
408 |
+
nn.LeakyReLU(0.2, inplace=True),
|
409 |
+
|
410 |
+
nn.Linear(nd // 4, output_size)
|
411 |
+
)
|
412 |
+
# self.linear2 = nn.Linear(hidden_size, output_size)
|
413 |
+
|
414 |
+
self.input_emb.apply(init_weight)
|
415 |
+
self.pos_emb.apply(init_weight)
|
416 |
+
self.output.apply(init_weight)
|
417 |
+
# self.linear2.apply(init_weight)
|
418 |
+
# self.batch_size = batch_size
|
419 |
+
self.hidden_size = hidden_size
|
420 |
+
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
|
421 |
+
|
422 |
+
# input(batch_size, seq_len, dim)
|
423 |
+
def forward(self, word_embs, pos_onehot, cap_lens):
|
424 |
+
num_samples = word_embs.shape[0]
|
425 |
+
|
426 |
+
pos_embs = self.pos_emb(pos_onehot)
|
427 |
+
inputs = word_embs + pos_embs
|
428 |
+
input_embs = self.input_emb(inputs)
|
429 |
+
hidden = self.hidden.repeat(1, num_samples, 1)
|
430 |
+
|
431 |
+
cap_lens = cap_lens.data.tolist()
|
432 |
+
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
|
433 |
+
|
434 |
+
gru_seq, gru_last = self.gru(emb, hidden)
|
435 |
+
|
436 |
+
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
|
437 |
+
|
438 |
+
return self.output(gru_last)
|
models/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .transformer import MotionTransformer
|
2 |
+
from .gaussian_diffusion import GaussianDiffusion
|
3 |
+
|
4 |
+
__all__ = ['MotionTransformer', 'GaussianDiffusion']
|
models/gaussian_diffusion.py
ADDED
@@ -0,0 +1,1145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This code is borrowed from https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/gaussian_diffusion.py
|
3 |
+
"""
|
4 |
+
|
5 |
+
import enum
|
6 |
+
import math
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch as th
|
10 |
+
|
11 |
+
|
12 |
+
from abc import ABC, abstractmethod
|
13 |
+
import torch.distributed as dist
|
14 |
+
|
15 |
+
|
16 |
+
def create_named_schedule_sampler(name, diffusion):
|
17 |
+
"""
|
18 |
+
Create a ScheduleSampler from a library of pre-defined samplers.
|
19 |
+
:param name: the name of the sampler.
|
20 |
+
:param diffusion: the diffusion object to sample for.
|
21 |
+
"""
|
22 |
+
if name == "uniform":
|
23 |
+
return UniformSampler(diffusion)
|
24 |
+
elif name == "loss-second-moment":
|
25 |
+
return LossSecondMomentResampler(diffusion)
|
26 |
+
else:
|
27 |
+
raise NotImplementedError(f"unknown schedule sampler: {name}")
|
28 |
+
|
29 |
+
|
30 |
+
class ScheduleSampler(ABC):
|
31 |
+
"""
|
32 |
+
A distribution over timesteps in the diffusion process, intended to reduce
|
33 |
+
variance of the objective.
|
34 |
+
By default, samplers perform unbiased importance sampling, in which the
|
35 |
+
objective's mean is unchanged.
|
36 |
+
However, subclasses may override sample() to change how the resampled
|
37 |
+
terms are reweighted, allowing for actual changes in the objective.
|
38 |
+
"""
|
39 |
+
|
40 |
+
@abstractmethod
|
41 |
+
def weights(self):
|
42 |
+
"""
|
43 |
+
Get a numpy array of weights, one per diffusion step.
|
44 |
+
The weights needn't be normalized, but must be positive.
|
45 |
+
"""
|
46 |
+
|
47 |
+
def sample(self, batch_size, device):
|
48 |
+
"""
|
49 |
+
Importance-sample timesteps for a batch.
|
50 |
+
:param batch_size: the number of timesteps.
|
51 |
+
:param device: the torch device to save to.
|
52 |
+
:return: a tuple (timesteps, weights):
|
53 |
+
- timesteps: a tensor of timestep indices.
|
54 |
+
- weights: a tensor of weights to scale the resulting losses.
|
55 |
+
"""
|
56 |
+
w = self.weights()
|
57 |
+
p = w / np.sum(w)
|
58 |
+
indices_np = np.random.choice(len(p), size=(batch_size,), p=p)
|
59 |
+
indices = th.from_numpy(indices_np).long().to(device)
|
60 |
+
weights_np = 1 / (len(p) * p[indices_np])
|
61 |
+
weights = th.from_numpy(weights_np).float().to(device)
|
62 |
+
return indices, weights
|
63 |
+
|
64 |
+
|
65 |
+
class UniformSampler(ScheduleSampler):
|
66 |
+
def __init__(self, diffusion):
|
67 |
+
self.diffusion = diffusion
|
68 |
+
self._weights = np.ones([diffusion.num_timesteps])
|
69 |
+
|
70 |
+
def weights(self):
|
71 |
+
return self._weights
|
72 |
+
|
73 |
+
|
74 |
+
class LossAwareSampler(ScheduleSampler):
|
75 |
+
def update_with_local_losses(self, local_ts, local_losses):
|
76 |
+
"""
|
77 |
+
Update the reweighting using losses from a model.
|
78 |
+
Call this method from each rank with a batch of timesteps and the
|
79 |
+
corresponding losses for each of those timesteps.
|
80 |
+
This method will perform synchronization to make sure all of the ranks
|
81 |
+
maintain the exact same reweighting.
|
82 |
+
:param local_ts: an integer Tensor of timesteps.
|
83 |
+
:param local_losses: a 1D Tensor of losses.
|
84 |
+
"""
|
85 |
+
batch_sizes = [
|
86 |
+
th.tensor([0], dtype=th.int32, device=local_ts.device)
|
87 |
+
for _ in range(dist.get_world_size())
|
88 |
+
]
|
89 |
+
dist.all_gather(
|
90 |
+
batch_sizes,
|
91 |
+
th.tensor([len(local_ts)], dtype=th.int32, device=local_ts.device),
|
92 |
+
)
|
93 |
+
|
94 |
+
# Pad all_gather batches to be the maximum batch size.
|
95 |
+
batch_sizes = [x.item() for x in batch_sizes]
|
96 |
+
max_bs = max(batch_sizes)
|
97 |
+
|
98 |
+
timestep_batches = [th.zeros(max_bs).to(local_ts) for bs in batch_sizes]
|
99 |
+
loss_batches = [th.zeros(max_bs).to(local_losses) for bs in batch_sizes]
|
100 |
+
dist.all_gather(timestep_batches, local_ts)
|
101 |
+
dist.all_gather(loss_batches, local_losses)
|
102 |
+
timesteps = [
|
103 |
+
x.item() for y, bs in zip(timestep_batches, batch_sizes) for x in y[:bs]
|
104 |
+
]
|
105 |
+
losses = [x.item() for y, bs in zip(loss_batches, batch_sizes) for x in y[:bs]]
|
106 |
+
self.update_with_all_losses(timesteps, losses)
|
107 |
+
|
108 |
+
@abstractmethod
|
109 |
+
def update_with_all_losses(self, ts, losses):
|
110 |
+
"""
|
111 |
+
Update the reweighting using losses from a model.
|
112 |
+
Sub-classes should override this method to update the reweighting
|
113 |
+
using losses from the model.
|
114 |
+
This method directly updates the reweighting without synchronizing
|
115 |
+
between workers. It is called by update_with_local_losses from all
|
116 |
+
ranks with identical arguments. Thus, it should have deterministic
|
117 |
+
behavior to maintain state across workers.
|
118 |
+
:param ts: a list of int timesteps.
|
119 |
+
:param losses: a list of float losses, one per timestep.
|
120 |
+
"""
|
121 |
+
|
122 |
+
|
123 |
+
class LossSecondMomentResampler(LossAwareSampler):
|
124 |
+
def __init__(self, diffusion, history_per_term=10, uniform_prob=0.001):
|
125 |
+
self.diffusion = diffusion
|
126 |
+
self.history_per_term = history_per_term
|
127 |
+
self.uniform_prob = uniform_prob
|
128 |
+
self._loss_history = np.zeros(
|
129 |
+
[diffusion.num_timesteps, history_per_term], dtype=np.float64
|
130 |
+
)
|
131 |
+
self._loss_counts = np.zeros([diffusion.num_timesteps], dtype=np.int)
|
132 |
+
|
133 |
+
def weights(self):
|
134 |
+
if not self._warmed_up():
|
135 |
+
return np.ones([self.diffusion.num_timesteps], dtype=np.float64)
|
136 |
+
weights = np.sqrt(np.mean(self._loss_history ** 2, axis=-1))
|
137 |
+
weights /= np.sum(weights)
|
138 |
+
weights *= 1 - self.uniform_prob
|
139 |
+
weights += self.uniform_prob / len(weights)
|
140 |
+
return weights
|
141 |
+
|
142 |
+
def update_with_all_losses(self, ts, losses):
|
143 |
+
for t, loss in zip(ts, losses):
|
144 |
+
if self._loss_counts[t] == self.history_per_term:
|
145 |
+
# Shift out the oldest loss term.
|
146 |
+
self._loss_history[t, :-1] = self._loss_history[t, 1:]
|
147 |
+
self._loss_history[t, -1] = loss
|
148 |
+
else:
|
149 |
+
self._loss_history[t, self._loss_counts[t]] = loss
|
150 |
+
self._loss_counts[t] += 1
|
151 |
+
|
152 |
+
def _warmed_up(self):
|
153 |
+
return (self._loss_counts == self.history_per_term).all()
|
154 |
+
|
155 |
+
|
156 |
+
def mean_flat(tensor):
|
157 |
+
"""
|
158 |
+
Take the mean over all non-batch dimensions.
|
159 |
+
"""
|
160 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
161 |
+
|
162 |
+
|
163 |
+
def normal_kl(mean1, logvar1, mean2, logvar2):
|
164 |
+
"""
|
165 |
+
Compute the KL divergence between two gaussians.
|
166 |
+
Shapes are automatically broadcasted, so batches can be compared to
|
167 |
+
scalars, among other use cases.
|
168 |
+
"""
|
169 |
+
tensor = None
|
170 |
+
for obj in (mean1, logvar1, mean2, logvar2):
|
171 |
+
if isinstance(obj, th.Tensor):
|
172 |
+
tensor = obj
|
173 |
+
break
|
174 |
+
assert tensor is not None, "at least one argument must be a Tensor"
|
175 |
+
|
176 |
+
# Force variances to be Tensors. Broadcasting helps convert scalars to
|
177 |
+
# Tensors, but it does not work for th.exp().
|
178 |
+
logvar1, logvar2 = [
|
179 |
+
x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
|
180 |
+
for x in (logvar1, logvar2)
|
181 |
+
]
|
182 |
+
|
183 |
+
return 0.5 * (
|
184 |
+
-1.0
|
185 |
+
+ logvar2
|
186 |
+
- logvar1
|
187 |
+
+ th.exp(logvar1 - logvar2)
|
188 |
+
+ ((mean1 - mean2) ** 2) * th.exp(-logvar2)
|
189 |
+
)
|
190 |
+
|
191 |
+
|
192 |
+
def approx_standard_normal_cdf(x):
|
193 |
+
"""
|
194 |
+
A fast approximation of the cumulative distribution function of the
|
195 |
+
standard normal.
|
196 |
+
"""
|
197 |
+
return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
|
198 |
+
|
199 |
+
|
200 |
+
def discretized_gaussian_log_likelihood(x, *, means, log_scales):
|
201 |
+
"""
|
202 |
+
Compute the log-likelihood of a Gaussian distribution discretizing to a
|
203 |
+
given image.
|
204 |
+
:param x: the target images. It is assumed that this was uint8 values,
|
205 |
+
rescaled to the range [-1, 1].
|
206 |
+
:param means: the Gaussian mean Tensor.
|
207 |
+
:param log_scales: the Gaussian log stddev Tensor.
|
208 |
+
:return: a tensor like x of log probabilities (in nats).
|
209 |
+
"""
|
210 |
+
assert x.shape == means.shape == log_scales.shape
|
211 |
+
centered_x = x - means
|
212 |
+
inv_stdv = th.exp(-log_scales)
|
213 |
+
plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
|
214 |
+
cdf_plus = approx_standard_normal_cdf(plus_in)
|
215 |
+
min_in = inv_stdv * (centered_x - 1.0 / 255.0)
|
216 |
+
cdf_min = approx_standard_normal_cdf(min_in)
|
217 |
+
log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
|
218 |
+
log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
|
219 |
+
cdf_delta = cdf_plus - cdf_min
|
220 |
+
log_probs = th.where(
|
221 |
+
x < -0.999,
|
222 |
+
log_cdf_plus,
|
223 |
+
th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
|
224 |
+
)
|
225 |
+
assert log_probs.shape == x.shape
|
226 |
+
return log_probs
|
227 |
+
|
228 |
+
|
229 |
+
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
|
230 |
+
"""
|
231 |
+
Get a pre-defined beta schedule for the given name.
|
232 |
+
|
233 |
+
The beta schedule library consists of beta schedules which remain similar
|
234 |
+
in the limit of num_diffusion_timesteps.
|
235 |
+
Beta schedules may be added, but should not be removed or changed once
|
236 |
+
they are committed to maintain backwards compatibility.
|
237 |
+
"""
|
238 |
+
if schedule_name == "linear":
|
239 |
+
# Linear schedule from Ho et al, extended to work for any number of
|
240 |
+
# diffusion steps.
|
241 |
+
scale = 1000 / num_diffusion_timesteps
|
242 |
+
beta_start = scale * 0.0001
|
243 |
+
beta_end = scale * 0.02
|
244 |
+
return np.linspace(
|
245 |
+
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
|
246 |
+
)
|
247 |
+
elif schedule_name == "cosine":
|
248 |
+
return betas_for_alpha_bar(
|
249 |
+
num_diffusion_timesteps,
|
250 |
+
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
|
254 |
+
|
255 |
+
|
256 |
+
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
257 |
+
"""
|
258 |
+
Create a beta schedule that discretizes the given alpha_t_bar function,
|
259 |
+
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
260 |
+
|
261 |
+
:param num_diffusion_timesteps: the number of betas to produce.
|
262 |
+
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
263 |
+
produces the cumulative product of (1-beta) up to that
|
264 |
+
part of the diffusion process.
|
265 |
+
:param max_beta: the maximum beta to use; use values lower than 1 to
|
266 |
+
prevent singularities.
|
267 |
+
"""
|
268 |
+
betas = []
|
269 |
+
for i in range(num_diffusion_timesteps):
|
270 |
+
t1 = i / num_diffusion_timesteps
|
271 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
272 |
+
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
273 |
+
return np.array(betas)
|
274 |
+
|
275 |
+
|
276 |
+
class ModelMeanType(enum.Enum):
|
277 |
+
"""
|
278 |
+
Which type of output the model predicts.
|
279 |
+
"""
|
280 |
+
|
281 |
+
PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
|
282 |
+
START_X = enum.auto() # the model predicts x_0
|
283 |
+
EPSILON = enum.auto() # the model predicts epsilon
|
284 |
+
|
285 |
+
|
286 |
+
class ModelVarType(enum.Enum):
|
287 |
+
"""
|
288 |
+
What is used as the model's output variance.
|
289 |
+
|
290 |
+
The LEARNED_RANGE option has been added to allow the model to predict
|
291 |
+
values between FIXED_SMALL and FIXED_LARGE, making its job easier.
|
292 |
+
"""
|
293 |
+
|
294 |
+
LEARNED = enum.auto()
|
295 |
+
FIXED_SMALL = enum.auto()
|
296 |
+
FIXED_LARGE = enum.auto()
|
297 |
+
LEARNED_RANGE = enum.auto()
|
298 |
+
|
299 |
+
|
300 |
+
class LossType(enum.Enum):
|
301 |
+
MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
|
302 |
+
RESCALED_MSE = (
|
303 |
+
enum.auto()
|
304 |
+
) # use raw MSE loss (with RESCALED_KL when learning variances)
|
305 |
+
KL = enum.auto() # use the variational lower-bound
|
306 |
+
RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
|
307 |
+
|
308 |
+
def is_vb(self):
|
309 |
+
return self == LossType.KL or self == LossType.RESCALED_KL
|
310 |
+
|
311 |
+
|
312 |
+
class GaussianDiffusion:
|
313 |
+
"""
|
314 |
+
Utilities for training and sampling diffusion models.
|
315 |
+
|
316 |
+
Ported directly from here, and then adapted over time to further experimentation.
|
317 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
|
318 |
+
|
319 |
+
:param betas: a 1-D numpy array of betas for each diffusion timestep,
|
320 |
+
starting at T and going to 1.
|
321 |
+
:param model_mean_type: a ModelMeanType determining what the model outputs.
|
322 |
+
:param model_var_type: a ModelVarType determining how variance is output.
|
323 |
+
:param loss_type: a LossType determining the loss function to use.
|
324 |
+
:param rescale_timesteps: if True, pass floating point timesteps into the
|
325 |
+
model so that they are always scaled like in the
|
326 |
+
original paper (0 to 1000).
|
327 |
+
"""
|
328 |
+
|
329 |
+
def __init__(
|
330 |
+
self,
|
331 |
+
*,
|
332 |
+
betas,
|
333 |
+
model_mean_type,
|
334 |
+
model_var_type,
|
335 |
+
loss_type,
|
336 |
+
rescale_timesteps=False,
|
337 |
+
):
|
338 |
+
self.model_mean_type = model_mean_type
|
339 |
+
self.model_var_type = model_var_type
|
340 |
+
self.loss_type = loss_type
|
341 |
+
self.rescale_timesteps = rescale_timesteps
|
342 |
+
|
343 |
+
# Use float64 for accuracy.
|
344 |
+
betas = np.array(betas, dtype=np.float64)
|
345 |
+
self.betas = betas
|
346 |
+
assert len(betas.shape) == 1, "betas must be 1-D"
|
347 |
+
assert (betas > 0).all() and (betas <= 1).all()
|
348 |
+
|
349 |
+
self.num_timesteps = int(betas.shape[0])
|
350 |
+
|
351 |
+
alphas = 1.0 - betas
|
352 |
+
self.alphas_cumprod = np.cumprod(alphas, axis=0)
|
353 |
+
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
|
354 |
+
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
|
355 |
+
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
|
356 |
+
|
357 |
+
# calculations for diffusion q(x_t | x_{t-1}) and others
|
358 |
+
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
|
359 |
+
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
|
360 |
+
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
|
361 |
+
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
|
362 |
+
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
|
363 |
+
|
364 |
+
# calculations for posterior q(x_{t-1} | x_t, x_0)
|
365 |
+
self.posterior_variance = (
|
366 |
+
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
367 |
+
)
|
368 |
+
# log calculation clipped because the posterior variance is 0 at the
|
369 |
+
# beginning of the diffusion chain.
|
370 |
+
self.posterior_log_variance_clipped = np.log(
|
371 |
+
np.append(self.posterior_variance[1], self.posterior_variance[1:])
|
372 |
+
)
|
373 |
+
self.posterior_mean_coef1 = (
|
374 |
+
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
|
375 |
+
)
|
376 |
+
self.posterior_mean_coef2 = (
|
377 |
+
(1.0 - self.alphas_cumprod_prev)
|
378 |
+
* np.sqrt(alphas)
|
379 |
+
/ (1.0 - self.alphas_cumprod)
|
380 |
+
)
|
381 |
+
|
382 |
+
def q_mean_variance(self, x_start, t):
|
383 |
+
"""
|
384 |
+
Get the distribution q(x_t | x_0).
|
385 |
+
|
386 |
+
:param x_start: the [N x C x ...] tensor of noiseless inputs.
|
387 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
388 |
+
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
|
389 |
+
"""
|
390 |
+
mean = (
|
391 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
392 |
+
)
|
393 |
+
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
|
394 |
+
log_variance = _extract_into_tensor(
|
395 |
+
self.log_one_minus_alphas_cumprod, t, x_start.shape
|
396 |
+
)
|
397 |
+
return mean, variance, log_variance
|
398 |
+
|
399 |
+
def q_sample(self, x_start, t, noise=None):
|
400 |
+
"""
|
401 |
+
Diffuse the data for a given number of diffusion steps.
|
402 |
+
|
403 |
+
In other words, sample from q(x_t | x_0).
|
404 |
+
|
405 |
+
:param x_start: the initial data batch.
|
406 |
+
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
|
407 |
+
:param noise: if specified, the split-out normal noise.
|
408 |
+
:return: A noisy version of x_start.
|
409 |
+
"""
|
410 |
+
if noise is None:
|
411 |
+
noise = th.randn_like(x_start)
|
412 |
+
assert noise.shape == x_start.shape
|
413 |
+
return (
|
414 |
+
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
|
415 |
+
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
|
416 |
+
* noise
|
417 |
+
)
|
418 |
+
|
419 |
+
def q_posterior_mean_variance(self, x_start, x_t, t):
|
420 |
+
"""
|
421 |
+
Compute the mean and variance of the diffusion posterior:
|
422 |
+
|
423 |
+
q(x_{t-1} | x_t, x_0)
|
424 |
+
|
425 |
+
"""
|
426 |
+
assert x_start.shape == x_t.shape
|
427 |
+
posterior_mean = (
|
428 |
+
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
|
429 |
+
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
|
430 |
+
)
|
431 |
+
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
|
432 |
+
posterior_log_variance_clipped = _extract_into_tensor(
|
433 |
+
self.posterior_log_variance_clipped, t, x_t.shape
|
434 |
+
)
|
435 |
+
assert (
|
436 |
+
posterior_mean.shape[0]
|
437 |
+
== posterior_variance.shape[0]
|
438 |
+
== posterior_log_variance_clipped.shape[0]
|
439 |
+
== x_start.shape[0]
|
440 |
+
)
|
441 |
+
return posterior_mean, posterior_variance, posterior_log_variance_clipped
|
442 |
+
|
443 |
+
def p_mean_variance(
|
444 |
+
self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
|
445 |
+
):
|
446 |
+
"""
|
447 |
+
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
|
448 |
+
the initial x, x_0.
|
449 |
+
|
450 |
+
:param model: the model, which takes a signal and a batch of timesteps
|
451 |
+
as input.
|
452 |
+
:param x: the [N x C x ...] tensor at time t.
|
453 |
+
:param t: a 1-D Tensor of timesteps.
|
454 |
+
:param clip_denoised: if True, clip the denoised signal into [-1, 1].
|
455 |
+
:param denoised_fn: if not None, a function which applies to the
|
456 |
+
x_start prediction before it is used to sample. Applies before
|
457 |
+
clip_denoised.
|
458 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
459 |
+
pass to the model. This can be used for conditioning.
|
460 |
+
:return: a dict with the following keys:
|
461 |
+
- 'mean': the model mean output.
|
462 |
+
- 'variance': the model variance output.
|
463 |
+
- 'log_variance': the log of 'variance'.
|
464 |
+
- 'pred_xstart': the prediction for x_0.
|
465 |
+
"""
|
466 |
+
if model_kwargs is None:
|
467 |
+
model_kwargs = {}
|
468 |
+
|
469 |
+
B, C = x.shape[:2]
|
470 |
+
assert t.shape == (B,)
|
471 |
+
model_output = model(x, self._scale_timesteps(t), **model_kwargs)
|
472 |
+
|
473 |
+
if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
|
474 |
+
assert model_output.shape == (B, 2 * C, *x.shape[2:])
|
475 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
476 |
+
if self.model_var_type == ModelVarType.LEARNED:
|
477 |
+
model_log_variance = model_var_values
|
478 |
+
model_variance = th.exp(model_log_variance)
|
479 |
+
else:
|
480 |
+
min_log = _extract_into_tensor(
|
481 |
+
self.posterior_log_variance_clipped, t, x.shape
|
482 |
+
)
|
483 |
+
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
|
484 |
+
# The model_var_values is [-1, 1] for [min_var, max_var].
|
485 |
+
frac = (model_var_values + 1) / 2
|
486 |
+
model_log_variance = frac * max_log + (1 - frac) * min_log
|
487 |
+
model_variance = th.exp(model_log_variance)
|
488 |
+
else:
|
489 |
+
model_variance, model_log_variance = {
|
490 |
+
# for fixedlarge, we set the initial (log-)variance like so
|
491 |
+
# to get a better decoder log likelihood.
|
492 |
+
ModelVarType.FIXED_LARGE: (
|
493 |
+
np.append(self.posterior_variance[1], self.betas[1:]),
|
494 |
+
np.log(np.append(self.posterior_variance[1], self.betas[1:])),
|
495 |
+
),
|
496 |
+
ModelVarType.FIXED_SMALL: (
|
497 |
+
self.posterior_variance,
|
498 |
+
self.posterior_log_variance_clipped,
|
499 |
+
),
|
500 |
+
}[self.model_var_type]
|
501 |
+
model_variance = _extract_into_tensor(model_variance, t, x.shape)
|
502 |
+
model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
|
503 |
+
|
504 |
+
def process_xstart(x):
|
505 |
+
if denoised_fn is not None:
|
506 |
+
x = denoised_fn(x)
|
507 |
+
if clip_denoised:
|
508 |
+
return x.clamp(-1, 1)
|
509 |
+
return x
|
510 |
+
|
511 |
+
if self.model_mean_type == ModelMeanType.PREVIOUS_X:
|
512 |
+
pred_xstart = process_xstart(
|
513 |
+
self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
|
514 |
+
)
|
515 |
+
model_mean = model_output
|
516 |
+
elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
|
517 |
+
if self.model_mean_type == ModelMeanType.START_X:
|
518 |
+
pred_xstart = process_xstart(model_output)
|
519 |
+
else:
|
520 |
+
pred_xstart = process_xstart(
|
521 |
+
self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
|
522 |
+
)
|
523 |
+
model_mean, _, _ = self.q_posterior_mean_variance(
|
524 |
+
x_start=pred_xstart, x_t=x, t=t
|
525 |
+
)
|
526 |
+
else:
|
527 |
+
raise NotImplementedError(self.model_mean_type)
|
528 |
+
|
529 |
+
assert (
|
530 |
+
model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
|
531 |
+
)
|
532 |
+
return {
|
533 |
+
"mean": model_mean,
|
534 |
+
"variance": model_variance,
|
535 |
+
"log_variance": model_log_variance,
|
536 |
+
"pred_xstart": pred_xstart,
|
537 |
+
}
|
538 |
+
|
539 |
+
def _predict_xstart_from_eps(self, x_t, t, eps):
|
540 |
+
assert x_t.shape == eps.shape
|
541 |
+
return (
|
542 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
543 |
+
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
|
544 |
+
)
|
545 |
+
|
546 |
+
def _predict_xstart_from_xprev(self, x_t, t, xprev):
|
547 |
+
assert x_t.shape == xprev.shape
|
548 |
+
return ( # (xprev - coef2*x_t) / coef1
|
549 |
+
_extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
|
550 |
+
- _extract_into_tensor(
|
551 |
+
self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
|
552 |
+
)
|
553 |
+
* x_t
|
554 |
+
)
|
555 |
+
|
556 |
+
def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
|
557 |
+
return (
|
558 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
|
559 |
+
- pred_xstart
|
560 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
|
561 |
+
|
562 |
+
def _scale_timesteps(self, t):
|
563 |
+
if self.rescale_timesteps:
|
564 |
+
return t.float() * (1000.0 / self.num_timesteps)
|
565 |
+
return t
|
566 |
+
|
567 |
+
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
568 |
+
"""
|
569 |
+
Compute the mean for the previous step, given a function cond_fn that
|
570 |
+
computes the gradient of a conditional log probability with respect to
|
571 |
+
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
|
572 |
+
condition on y.
|
573 |
+
|
574 |
+
This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
|
575 |
+
"""
|
576 |
+
gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs)
|
577 |
+
new_mean = (
|
578 |
+
p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
|
579 |
+
)
|
580 |
+
return new_mean
|
581 |
+
|
582 |
+
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
|
583 |
+
"""
|
584 |
+
Compute what the p_mean_variance output would have been, should the
|
585 |
+
model's score function be conditioned by cond_fn.
|
586 |
+
|
587 |
+
See condition_mean() for details on cond_fn.
|
588 |
+
|
589 |
+
Unlike condition_mean(), this instead uses the conditioning strategy
|
590 |
+
from Song et al (2020).
|
591 |
+
"""
|
592 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
593 |
+
|
594 |
+
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
|
595 |
+
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(
|
596 |
+
x, self._scale_timesteps(t), **model_kwargs
|
597 |
+
)
|
598 |
+
|
599 |
+
out = p_mean_var.copy()
|
600 |
+
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
|
601 |
+
out["mean"], _, _ = self.q_posterior_mean_variance(
|
602 |
+
x_start=out["pred_xstart"], x_t=x, t=t
|
603 |
+
)
|
604 |
+
return out
|
605 |
+
|
606 |
+
def p_sample(
|
607 |
+
self,
|
608 |
+
model,
|
609 |
+
x,
|
610 |
+
t,
|
611 |
+
clip_denoised=True,
|
612 |
+
denoised_fn=None,
|
613 |
+
cond_fn=None,
|
614 |
+
pre_seq=None,
|
615 |
+
transl_req=None,
|
616 |
+
model_kwargs=None,
|
617 |
+
):
|
618 |
+
"""
|
619 |
+
Sample x_{t-1} from the model at the given timestep.
|
620 |
+
|
621 |
+
:param model: the model to sample from.
|
622 |
+
:param x: the current tensor at x_{t-1}.
|
623 |
+
:param t: the value of t, starting at 0 for the first diffusion step.
|
624 |
+
:param clip_denoised: if True, clip the x_start prediction to [-1, 1].
|
625 |
+
:param denoised_fn: if not None, a function which applies to the
|
626 |
+
x_start prediction before it is used to sample.
|
627 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
628 |
+
similarly to the model.
|
629 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
630 |
+
pass to the model. This can be used for conditioning.
|
631 |
+
:return: a dict containing the following keys:
|
632 |
+
- 'sample': a random sample from the model.
|
633 |
+
- 'pred_xstart': a prediction of x_0.
|
634 |
+
"""
|
635 |
+
# concat seq
|
636 |
+
if pre_seq is not None:
|
637 |
+
T = pre_seq.shape[2]
|
638 |
+
noise = th.randn_like(pre_seq)
|
639 |
+
x_t = self.q_sample(pre_seq, t, noise=noise)
|
640 |
+
x[:, :, :T] = x_t
|
641 |
+
|
642 |
+
if transl_req is not None:
|
643 |
+
for item in transl_req:
|
644 |
+
noise = th.randn(2).type_as(x)
|
645 |
+
transl = th.Tensor(item[1:]).type_as(x)
|
646 |
+
x_t = self.q_sample(transl, t, noise=noise)
|
647 |
+
x[:, :2, item[0]] = x_t
|
648 |
+
|
649 |
+
out = self.p_mean_variance(
|
650 |
+
model,
|
651 |
+
x,
|
652 |
+
t,
|
653 |
+
clip_denoised=clip_denoised,
|
654 |
+
denoised_fn=denoised_fn,
|
655 |
+
model_kwargs=model_kwargs,
|
656 |
+
)
|
657 |
+
noise = th.randn_like(x)
|
658 |
+
nonzero_mask = (
|
659 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
660 |
+
) # no noise when t == 0
|
661 |
+
if cond_fn is not None:
|
662 |
+
out["mean"] = self.condition_mean(
|
663 |
+
cond_fn, out, x, t, model_kwargs=model_kwargs
|
664 |
+
)
|
665 |
+
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
|
666 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
667 |
+
|
668 |
+
def p_sample_loop(
|
669 |
+
self,
|
670 |
+
model,
|
671 |
+
shape,
|
672 |
+
noise=None,
|
673 |
+
clip_denoised=True,
|
674 |
+
denoised_fn=None,
|
675 |
+
cond_fn=None,
|
676 |
+
model_kwargs=None,
|
677 |
+
device=None,
|
678 |
+
pre_seq=None,
|
679 |
+
transl_req=None,
|
680 |
+
progress=False,
|
681 |
+
):
|
682 |
+
"""
|
683 |
+
Generate samples from the model.
|
684 |
+
|
685 |
+
:param model: the model module.
|
686 |
+
:param shape: the shape of the samples, (N, C, H, W).
|
687 |
+
:param noise: if specified, the noise from the encoder to sample.
|
688 |
+
Should be of the same shape as `shape`.
|
689 |
+
:param clip_denoised: if True, clip x_start predictions to [-1, 1].
|
690 |
+
:param denoised_fn: if not None, a function which applies to the
|
691 |
+
x_start prediction before it is used to sample.
|
692 |
+
:param cond_fn: if not None, this is a gradient function that acts
|
693 |
+
similarly to the model.
|
694 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
695 |
+
pass to the model. This can be used for conditioning.
|
696 |
+
:param device: if specified, the device to create the samples on.
|
697 |
+
If not specified, use a model parameter's device.
|
698 |
+
:param progress: if True, show a tqdm progress bar.
|
699 |
+
:return: a non-differentiable batch of samples.
|
700 |
+
"""
|
701 |
+
final = None
|
702 |
+
for sample in self.p_sample_loop_progressive(
|
703 |
+
model,
|
704 |
+
shape,
|
705 |
+
noise=noise,
|
706 |
+
clip_denoised=clip_denoised,
|
707 |
+
denoised_fn=denoised_fn,
|
708 |
+
cond_fn=cond_fn,
|
709 |
+
model_kwargs=model_kwargs,
|
710 |
+
device=device,
|
711 |
+
pre_seq=pre_seq,
|
712 |
+
transl_req=transl_req,
|
713 |
+
progress=progress,
|
714 |
+
):
|
715 |
+
final = sample
|
716 |
+
return final["sample"]
|
717 |
+
|
718 |
+
def p_sample_loop_progressive(
|
719 |
+
self,
|
720 |
+
model,
|
721 |
+
shape,
|
722 |
+
noise=None,
|
723 |
+
clip_denoised=True,
|
724 |
+
denoised_fn=None,
|
725 |
+
cond_fn=None,
|
726 |
+
model_kwargs=None,
|
727 |
+
device=None,
|
728 |
+
pre_seq=None,
|
729 |
+
transl_req=None,
|
730 |
+
progress=False,
|
731 |
+
):
|
732 |
+
"""
|
733 |
+
Generate samples from the model and yield intermediate samples from
|
734 |
+
each timestep of diffusion.
|
735 |
+
|
736 |
+
Arguments are the same as p_sample_loop().
|
737 |
+
Returns a generator over dicts, where each dict is the return value of
|
738 |
+
p_sample().
|
739 |
+
"""
|
740 |
+
if device is None:
|
741 |
+
device = next(model.parameters()).device
|
742 |
+
assert isinstance(shape, (tuple, list))
|
743 |
+
if noise is not None:
|
744 |
+
img = noise
|
745 |
+
else:
|
746 |
+
img = th.randn(*shape, device=device)
|
747 |
+
indices = list(range(self.num_timesteps))[::-1]
|
748 |
+
if progress:
|
749 |
+
# Lazy import so that we don't depend on tqdm.
|
750 |
+
from tqdm.auto import tqdm
|
751 |
+
|
752 |
+
indices = tqdm(indices)
|
753 |
+
|
754 |
+
for i in indices:
|
755 |
+
t = th.tensor([i] * shape[0], device=device)
|
756 |
+
with th.no_grad():
|
757 |
+
out = self.p_sample(
|
758 |
+
model,
|
759 |
+
img,
|
760 |
+
t,
|
761 |
+
clip_denoised=clip_denoised,
|
762 |
+
denoised_fn=denoised_fn,
|
763 |
+
cond_fn=cond_fn,
|
764 |
+
model_kwargs=model_kwargs,
|
765 |
+
pre_seq=pre_seq,
|
766 |
+
transl_req=transl_req
|
767 |
+
)
|
768 |
+
yield out
|
769 |
+
img = out["sample"]
|
770 |
+
|
771 |
+
def ddim_sample(
|
772 |
+
self,
|
773 |
+
model,
|
774 |
+
x,
|
775 |
+
t,
|
776 |
+
clip_denoised=True,
|
777 |
+
denoised_fn=None,
|
778 |
+
cond_fn=None,
|
779 |
+
model_kwargs=None,
|
780 |
+
eta=0.0,
|
781 |
+
):
|
782 |
+
"""
|
783 |
+
Sample x_{t-1} from the model using DDIM.
|
784 |
+
|
785 |
+
Same usage as p_sample().
|
786 |
+
"""
|
787 |
+
out = self.p_mean_variance(
|
788 |
+
model,
|
789 |
+
x,
|
790 |
+
t,
|
791 |
+
clip_denoised=clip_denoised,
|
792 |
+
denoised_fn=denoised_fn,
|
793 |
+
model_kwargs=model_kwargs,
|
794 |
+
)
|
795 |
+
if cond_fn is not None:
|
796 |
+
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
|
797 |
+
|
798 |
+
# Usually our model outputs epsilon, but we re-derive it
|
799 |
+
# in case we used x_start or x_prev prediction.
|
800 |
+
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
|
801 |
+
|
802 |
+
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
|
803 |
+
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
|
804 |
+
sigma = (
|
805 |
+
eta
|
806 |
+
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
|
807 |
+
* th.sqrt(1 - alpha_bar / alpha_bar_prev)
|
808 |
+
)
|
809 |
+
# Equation 12.
|
810 |
+
noise = th.randn_like(x)
|
811 |
+
mean_pred = (
|
812 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_prev)
|
813 |
+
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
|
814 |
+
)
|
815 |
+
nonzero_mask = (
|
816 |
+
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
|
817 |
+
) # no noise when t == 0
|
818 |
+
sample = mean_pred + nonzero_mask * sigma * noise
|
819 |
+
return {"sample": sample, "pred_xstart": out["pred_xstart"]}
|
820 |
+
|
821 |
+
def ddim_reverse_sample(
|
822 |
+
self,
|
823 |
+
model,
|
824 |
+
x,
|
825 |
+
t,
|
826 |
+
clip_denoised=True,
|
827 |
+
denoised_fn=None,
|
828 |
+
model_kwargs=None,
|
829 |
+
eta=0.0,
|
830 |
+
):
|
831 |
+
"""
|
832 |
+
Sample x_{t+1} from the model using DDIM reverse ODE.
|
833 |
+
"""
|
834 |
+
assert eta == 0.0, "Reverse ODE only for deterministic path"
|
835 |
+
out = self.p_mean_variance(
|
836 |
+
model,
|
837 |
+
x,
|
838 |
+
t,
|
839 |
+
clip_denoised=clip_denoised,
|
840 |
+
denoised_fn=denoised_fn,
|
841 |
+
model_kwargs=model_kwargs,
|
842 |
+
)
|
843 |
+
# Usually our model outputs epsilon, but we re-derive it
|
844 |
+
# in case we used x_start or x_prev prediction.
|
845 |
+
eps = (
|
846 |
+
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
|
847 |
+
- out["pred_xstart"]
|
848 |
+
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
|
849 |
+
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
|
850 |
+
|
851 |
+
# Equation 12. reversed
|
852 |
+
mean_pred = (
|
853 |
+
out["pred_xstart"] * th.sqrt(alpha_bar_next)
|
854 |
+
+ th.sqrt(1 - alpha_bar_next) * eps
|
855 |
+
)
|
856 |
+
|
857 |
+
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
|
858 |
+
|
859 |
+
def ddim_sample_loop(
|
860 |
+
self,
|
861 |
+
model,
|
862 |
+
shape,
|
863 |
+
noise=None,
|
864 |
+
clip_denoised=True,
|
865 |
+
denoised_fn=None,
|
866 |
+
cond_fn=None,
|
867 |
+
model_kwargs=None,
|
868 |
+
device=None,
|
869 |
+
progress=False,
|
870 |
+
eta=0.0,
|
871 |
+
):
|
872 |
+
"""
|
873 |
+
Generate samples from the model using DDIM.
|
874 |
+
|
875 |
+
Same usage as p_sample_loop().
|
876 |
+
"""
|
877 |
+
final = None
|
878 |
+
for sample in self.ddim_sample_loop_progressive(
|
879 |
+
model,
|
880 |
+
shape,
|
881 |
+
noise=noise,
|
882 |
+
clip_denoised=clip_denoised,
|
883 |
+
denoised_fn=denoised_fn,
|
884 |
+
cond_fn=cond_fn,
|
885 |
+
model_kwargs=model_kwargs,
|
886 |
+
device=device,
|
887 |
+
progress=progress,
|
888 |
+
eta=eta,
|
889 |
+
):
|
890 |
+
final = sample
|
891 |
+
return final["sample"]
|
892 |
+
|
893 |
+
def ddim_sample_loop_progressive(
|
894 |
+
self,
|
895 |
+
model,
|
896 |
+
shape,
|
897 |
+
noise=None,
|
898 |
+
clip_denoised=True,
|
899 |
+
denoised_fn=None,
|
900 |
+
cond_fn=None,
|
901 |
+
model_kwargs=None,
|
902 |
+
device=None,
|
903 |
+
progress=False,
|
904 |
+
eta=0.0,
|
905 |
+
):
|
906 |
+
"""
|
907 |
+
Use DDIM to sample from the model and yield intermediate samples from
|
908 |
+
each timestep of DDIM.
|
909 |
+
|
910 |
+
Same usage as p_sample_loop_progressive().
|
911 |
+
"""
|
912 |
+
if device is None:
|
913 |
+
device = next(model.parameters()).device
|
914 |
+
assert isinstance(shape, (tuple, list))
|
915 |
+
if noise is not None:
|
916 |
+
img = noise
|
917 |
+
else:
|
918 |
+
img = th.randn(*shape, device=device)
|
919 |
+
indices = list(range(self.num_timesteps))[::-1]
|
920 |
+
|
921 |
+
if progress:
|
922 |
+
# Lazy import so that we don't depend on tqdm.
|
923 |
+
from tqdm.auto import tqdm
|
924 |
+
|
925 |
+
indices = tqdm(indices)
|
926 |
+
|
927 |
+
for i in indices:
|
928 |
+
t = th.tensor([i] * shape[0], device=device)
|
929 |
+
with th.no_grad():
|
930 |
+
out = self.ddim_sample(
|
931 |
+
model,
|
932 |
+
img,
|
933 |
+
t,
|
934 |
+
clip_denoised=clip_denoised,
|
935 |
+
denoised_fn=denoised_fn,
|
936 |
+
cond_fn=cond_fn,
|
937 |
+
model_kwargs=model_kwargs,
|
938 |
+
eta=eta,
|
939 |
+
)
|
940 |
+
yield out
|
941 |
+
img = out["sample"]
|
942 |
+
|
943 |
+
def _vb_terms_bpd(
|
944 |
+
self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
|
945 |
+
):
|
946 |
+
"""
|
947 |
+
Get a term for the variational lower-bound.
|
948 |
+
|
949 |
+
The resulting units are bits (rather than nats, as one might expect).
|
950 |
+
This allows for comparison to other papers.
|
951 |
+
|
952 |
+
:return: a dict with the following keys:
|
953 |
+
- 'output': a shape [N] tensor of NLLs or KLs.
|
954 |
+
- 'pred_xstart': the x_0 predictions.
|
955 |
+
"""
|
956 |
+
true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
|
957 |
+
x_start=x_start, x_t=x_t, t=t
|
958 |
+
)
|
959 |
+
out = self.p_mean_variance(
|
960 |
+
model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
|
961 |
+
)
|
962 |
+
kl = normal_kl(
|
963 |
+
true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
|
964 |
+
)
|
965 |
+
kl = mean_flat(kl) / np.log(2.0)
|
966 |
+
|
967 |
+
decoder_nll = -discretized_gaussian_log_likelihood(
|
968 |
+
x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
|
969 |
+
)
|
970 |
+
assert decoder_nll.shape == x_start.shape
|
971 |
+
decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
|
972 |
+
|
973 |
+
# At the first timestep return the decoder NLL,
|
974 |
+
# otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
|
975 |
+
output = th.where((t == 0), decoder_nll, kl)
|
976 |
+
return {"output": output, "pred_xstart": out["pred_xstart"]}
|
977 |
+
|
978 |
+
def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
|
979 |
+
"""
|
980 |
+
Compute training losses for a single timestep.
|
981 |
+
|
982 |
+
:param model: the model to evaluate loss on.
|
983 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
984 |
+
:param t: a batch of timestep indices.
|
985 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
986 |
+
pass to the model. This can be used for conditioning.
|
987 |
+
:param noise: if specified, the specific Gaussian noise to try to remove.
|
988 |
+
:return: a dict with the key "loss" containing a tensor of shape [N].
|
989 |
+
Some mean or variance settings may also have other keys.
|
990 |
+
"""
|
991 |
+
if model_kwargs is None:
|
992 |
+
model_kwargs = {}
|
993 |
+
if noise is None:
|
994 |
+
noise = th.randn_like(x_start)
|
995 |
+
x_t = self.q_sample(x_start, t, noise=noise)
|
996 |
+
|
997 |
+
terms = {}
|
998 |
+
|
999 |
+
if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
|
1000 |
+
terms["loss"] = self._vb_terms_bpd(
|
1001 |
+
model=model,
|
1002 |
+
x_start=x_start,
|
1003 |
+
x_t=x_t,
|
1004 |
+
t=t,
|
1005 |
+
clip_denoised=False,
|
1006 |
+
model_kwargs=model_kwargs,
|
1007 |
+
)["output"]
|
1008 |
+
if self.loss_type == LossType.RESCALED_KL:
|
1009 |
+
terms["loss"] *= self.num_timesteps
|
1010 |
+
elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
|
1011 |
+
model_output = model(x_t, self._scale_timesteps(t), **model_kwargs)
|
1012 |
+
|
1013 |
+
if self.model_var_type in [
|
1014 |
+
ModelVarType.LEARNED,
|
1015 |
+
ModelVarType.LEARNED_RANGE,
|
1016 |
+
]:
|
1017 |
+
B, C = x_t.shape[:2]
|
1018 |
+
assert model_output.shape == (B, C * 2, *x_t.shape[2:])
|
1019 |
+
model_output, model_var_values = th.split(model_output, C, dim=1)
|
1020 |
+
# Learn the variance using the variational bound, but don't let
|
1021 |
+
# it affect our mean prediction.
|
1022 |
+
frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
|
1023 |
+
terms["vb"] = self._vb_terms_bpd(
|
1024 |
+
model=lambda *args, r=frozen_out: r,
|
1025 |
+
x_start=x_start,
|
1026 |
+
x_t=x_t,
|
1027 |
+
t=t,
|
1028 |
+
clip_denoised=False,
|
1029 |
+
)["output"]
|
1030 |
+
if self.loss_type == LossType.RESCALED_MSE:
|
1031 |
+
# Divide by 1000 for equivalence with initial implementation.
|
1032 |
+
# Without a factor of 1/1000, the VB term hurts the MSE term.
|
1033 |
+
terms["vb"] *= self.num_timesteps / 1000.0
|
1034 |
+
|
1035 |
+
target = {
|
1036 |
+
ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
|
1037 |
+
x_start=x_start, x_t=x_t, t=t
|
1038 |
+
)[0],
|
1039 |
+
ModelMeanType.START_X: x_start,
|
1040 |
+
ModelMeanType.EPSILON: noise,
|
1041 |
+
}[self.model_mean_type]
|
1042 |
+
assert model_output.shape == target.shape == x_start.shape
|
1043 |
+
terms["mse"] = mean_flat((target - model_output) ** 2).view(-1, 1).mean(-1)
|
1044 |
+
# if "vb" in terms:
|
1045 |
+
# terms["loss"] = terms["mse"] + terms["vb"]
|
1046 |
+
# else:
|
1047 |
+
# terms["loss"] = terms["mse"]
|
1048 |
+
terms["target"] = target
|
1049 |
+
terms["pred"] = model_output
|
1050 |
+
else:
|
1051 |
+
raise NotImplementedError(self.loss_type)
|
1052 |
+
|
1053 |
+
return terms
|
1054 |
+
|
1055 |
+
def _prior_bpd(self, x_start):
|
1056 |
+
"""
|
1057 |
+
Get the prior KL term for the variational lower-bound, measured in
|
1058 |
+
bits-per-dim.
|
1059 |
+
|
1060 |
+
This term can't be optimized, as it only depends on the encoder.
|
1061 |
+
|
1062 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1063 |
+
:return: a batch of [N] KL values (in bits), one per batch element.
|
1064 |
+
"""
|
1065 |
+
batch_size = x_start.shape[0]
|
1066 |
+
t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
|
1067 |
+
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
|
1068 |
+
kl_prior = normal_kl(
|
1069 |
+
mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
|
1070 |
+
)
|
1071 |
+
return mean_flat(kl_prior) / np.log(2.0)
|
1072 |
+
|
1073 |
+
def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
|
1074 |
+
"""
|
1075 |
+
Compute the entire variational lower-bound, measured in bits-per-dim,
|
1076 |
+
as well as other related quantities.
|
1077 |
+
|
1078 |
+
:param model: the model to evaluate loss on.
|
1079 |
+
:param x_start: the [N x C x ...] tensor of inputs.
|
1080 |
+
:param clip_denoised: if True, clip denoised samples.
|
1081 |
+
:param model_kwargs: if not None, a dict of extra keyword arguments to
|
1082 |
+
pass to the model. This can be used for conditioning.
|
1083 |
+
|
1084 |
+
:return: a dict containing the following keys:
|
1085 |
+
- total_bpd: the total variational lower-bound, per batch element.
|
1086 |
+
- prior_bpd: the prior term in the lower-bound.
|
1087 |
+
- vb: an [N x T] tensor of terms in the lower-bound.
|
1088 |
+
- xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
|
1089 |
+
- mse: an [N x T] tensor of epsilon MSEs for each timestep.
|
1090 |
+
"""
|
1091 |
+
device = x_start.device
|
1092 |
+
batch_size = x_start.shape[0]
|
1093 |
+
|
1094 |
+
vb = []
|
1095 |
+
xstart_mse = []
|
1096 |
+
mse = []
|
1097 |
+
for t in list(range(self.num_timesteps))[::-1]:
|
1098 |
+
t_batch = th.tensor([t] * batch_size, device=device)
|
1099 |
+
noise = th.randn_like(x_start)
|
1100 |
+
x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
|
1101 |
+
# Calculate VLB term at the current timestep
|
1102 |
+
with th.no_grad():
|
1103 |
+
out = self._vb_terms_bpd(
|
1104 |
+
model,
|
1105 |
+
x_start=x_start,
|
1106 |
+
x_t=x_t,
|
1107 |
+
t=t_batch,
|
1108 |
+
clip_denoised=clip_denoised,
|
1109 |
+
model_kwargs=model_kwargs,
|
1110 |
+
)
|
1111 |
+
vb.append(out["output"])
|
1112 |
+
xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
|
1113 |
+
eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
|
1114 |
+
mse.append(mean_flat((eps - noise) ** 2))
|
1115 |
+
|
1116 |
+
vb = th.stack(vb, dim=1)
|
1117 |
+
xstart_mse = th.stack(xstart_mse, dim=1)
|
1118 |
+
mse = th.stack(mse, dim=1)
|
1119 |
+
|
1120 |
+
prior_bpd = self._prior_bpd(x_start)
|
1121 |
+
total_bpd = vb.sum(dim=1) + prior_bpd
|
1122 |
+
return {
|
1123 |
+
"total_bpd": total_bpd,
|
1124 |
+
"prior_bpd": prior_bpd,
|
1125 |
+
"vb": vb,
|
1126 |
+
"xstart_mse": xstart_mse,
|
1127 |
+
"mse": mse,
|
1128 |
+
}
|
1129 |
+
|
1130 |
+
|
1131 |
+
def _extract_into_tensor(arr, timesteps, broadcast_shape):
|
1132 |
+
"""
|
1133 |
+
Extract values from a 1-D numpy array for a batch of indices.
|
1134 |
+
|
1135 |
+
:param arr: the 1-D numpy array.
|
1136 |
+
:param timesteps: a tensor of indices into the array to extract.
|
1137 |
+
:param broadcast_shape: a larger shape of K dimensions with the batch
|
1138 |
+
dimension equal to the length of timesteps.
|
1139 |
+
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
|
1140 |
+
"""
|
1141 |
+
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
|
1142 |
+
while len(res.shape) < len(broadcast_shape):
|
1143 |
+
res = res[..., None]
|
1144 |
+
return res.expand(broadcast_shape)
|
1145 |
+
|
models/transformer.py
ADDED
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Copyright 2021 S-Lab
|
3 |
+
"""
|
4 |
+
|
5 |
+
from cv2 import norm
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import layer_norm, nn
|
9 |
+
import numpy as np
|
10 |
+
import clip
|
11 |
+
|
12 |
+
import math
|
13 |
+
|
14 |
+
|
15 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
16 |
+
"""
|
17 |
+
Create sinusoidal timestep embeddings.
|
18 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
19 |
+
These may be fractional.
|
20 |
+
:param dim: the dimension of the output.
|
21 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
22 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
23 |
+
"""
|
24 |
+
half = dim // 2
|
25 |
+
freqs = torch.exp(
|
26 |
+
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
27 |
+
).to(device=timesteps.device)
|
28 |
+
args = timesteps[:, None].float() * freqs[None]
|
29 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
30 |
+
if dim % 2:
|
31 |
+
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
32 |
+
return embedding
|
33 |
+
|
34 |
+
|
35 |
+
def set_requires_grad(nets, requires_grad=False):
|
36 |
+
"""Set requies_grad for all the networks.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
nets (nn.Module | list[nn.Module]): A list of networks or a single
|
40 |
+
network.
|
41 |
+
requires_grad (bool): Whether the networks require gradients or not
|
42 |
+
"""
|
43 |
+
if not isinstance(nets, list):
|
44 |
+
nets = [nets]
|
45 |
+
for net in nets:
|
46 |
+
if net is not None:
|
47 |
+
for param in net.parameters():
|
48 |
+
param.requires_grad = requires_grad
|
49 |
+
|
50 |
+
|
51 |
+
def zero_module(module):
|
52 |
+
"""
|
53 |
+
Zero out the parameters of a module and return it.
|
54 |
+
"""
|
55 |
+
for p in module.parameters():
|
56 |
+
p.detach().zero_()
|
57 |
+
return module
|
58 |
+
|
59 |
+
|
60 |
+
class StylizationBlock(nn.Module):
|
61 |
+
|
62 |
+
def __init__(self, latent_dim, time_embed_dim, dropout):
|
63 |
+
super().__init__()
|
64 |
+
self.emb_layers = nn.Sequential(
|
65 |
+
nn.SiLU(),
|
66 |
+
nn.Linear(time_embed_dim, 2 * latent_dim),
|
67 |
+
)
|
68 |
+
self.norm = nn.LayerNorm(latent_dim)
|
69 |
+
self.out_layers = nn.Sequential(
|
70 |
+
nn.SiLU(),
|
71 |
+
nn.Dropout(p=dropout),
|
72 |
+
zero_module(nn.Linear(latent_dim, latent_dim)),
|
73 |
+
)
|
74 |
+
|
75 |
+
def forward(self, h, emb):
|
76 |
+
"""
|
77 |
+
h: B, T, D
|
78 |
+
emb: B, D
|
79 |
+
"""
|
80 |
+
# B, 1, 2D
|
81 |
+
emb_out = self.emb_layers(emb).unsqueeze(1)
|
82 |
+
# scale: B, 1, D / shift: B, 1, D
|
83 |
+
scale, shift = torch.chunk(emb_out, 2, dim=2)
|
84 |
+
h = self.norm(h) * (1 + scale) + shift
|
85 |
+
h = self.out_layers(h)
|
86 |
+
return h
|
87 |
+
|
88 |
+
|
89 |
+
class LinearTemporalSelfAttention(nn.Module):
|
90 |
+
|
91 |
+
def __init__(self, seq_len, latent_dim, num_head, dropout, time_embed_dim):
|
92 |
+
super().__init__()
|
93 |
+
self.num_head = num_head
|
94 |
+
self.norm = nn.LayerNorm(latent_dim)
|
95 |
+
self.query = nn.Linear(latent_dim, latent_dim)
|
96 |
+
self.key = nn.Linear(latent_dim, latent_dim)
|
97 |
+
self.value = nn.Linear(latent_dim, latent_dim)
|
98 |
+
self.dropout = nn.Dropout(dropout)
|
99 |
+
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
|
100 |
+
|
101 |
+
def forward(self, x, emb, src_mask):
|
102 |
+
"""
|
103 |
+
x: B, T, D
|
104 |
+
"""
|
105 |
+
B, T, D = x.shape
|
106 |
+
H = self.num_head
|
107 |
+
# B, T, D
|
108 |
+
query = self.query(self.norm(x))
|
109 |
+
# B, T, D
|
110 |
+
key = (self.key(self.norm(x)) + (1 - src_mask) * -1000000)
|
111 |
+
query = F.softmax(query.view(B, T, H, -1), dim=-1)
|
112 |
+
key = F.softmax(key.view(B, T, H, -1), dim=1)
|
113 |
+
# B, T, H, HD
|
114 |
+
value = (self.value(self.norm(x)) * src_mask).view(B, T, H, -1)
|
115 |
+
# B, H, HD, HD
|
116 |
+
attention = torch.einsum('bnhd,bnhl->bhdl', key, value)
|
117 |
+
y = torch.einsum('bnhd,bhdl->bnhl', query, attention).reshape(B, T, D)
|
118 |
+
y = x + self.proj_out(y, emb)
|
119 |
+
return y
|
120 |
+
|
121 |
+
|
122 |
+
class LinearTemporalCrossAttention(nn.Module):
|
123 |
+
|
124 |
+
def __init__(self, seq_len, latent_dim, text_latent_dim, num_head, dropout, time_embed_dim):
|
125 |
+
super().__init__()
|
126 |
+
self.num_head = num_head
|
127 |
+
self.norm = nn.LayerNorm(latent_dim)
|
128 |
+
self.text_norm = nn.LayerNorm(text_latent_dim)
|
129 |
+
self.query = nn.Linear(latent_dim, latent_dim)
|
130 |
+
self.key = nn.Linear(text_latent_dim, latent_dim)
|
131 |
+
self.value = nn.Linear(text_latent_dim, latent_dim)
|
132 |
+
self.dropout = nn.Dropout(dropout)
|
133 |
+
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
|
134 |
+
|
135 |
+
def forward(self, x, xf, emb):
|
136 |
+
"""
|
137 |
+
x: B, T, D
|
138 |
+
xf: B, N, L
|
139 |
+
"""
|
140 |
+
B, T, D = x.shape
|
141 |
+
N = xf.shape[1]
|
142 |
+
H = self.num_head
|
143 |
+
# B, T, D
|
144 |
+
query = self.query(self.norm(x))
|
145 |
+
# B, N, D
|
146 |
+
key = self.key(self.text_norm(xf))
|
147 |
+
query = F.softmax(query.view(B, T, H, -1), dim=-1)
|
148 |
+
key = F.softmax(key.view(B, N, H, -1), dim=1)
|
149 |
+
# B, N, H, HD
|
150 |
+
value = self.value(self.text_norm(xf)).view(B, N, H, -1)
|
151 |
+
# B, H, HD, HD
|
152 |
+
attention = torch.einsum('bnhd,bnhl->bhdl', key, value)
|
153 |
+
y = torch.einsum('bnhd,bhdl->bnhl', query, attention).reshape(B, T, D)
|
154 |
+
y = x + self.proj_out(y, emb)
|
155 |
+
return y
|
156 |
+
|
157 |
+
class FFN(nn.Module):
|
158 |
+
|
159 |
+
def __init__(self, latent_dim, ffn_dim, dropout, time_embed_dim):
|
160 |
+
super().__init__()
|
161 |
+
self.linear1 = nn.Linear(latent_dim, ffn_dim)
|
162 |
+
self.linear2 = zero_module(nn.Linear(ffn_dim, latent_dim))
|
163 |
+
self.activation = nn.GELU()
|
164 |
+
self.dropout = nn.Dropout(dropout)
|
165 |
+
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
|
166 |
+
|
167 |
+
def forward(self, x, emb):
|
168 |
+
y = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
169 |
+
y = x + self.proj_out(y, emb)
|
170 |
+
return y
|
171 |
+
|
172 |
+
|
173 |
+
class LinearTemporalDiffusionTransformerDecoderLayer(nn.Module):
|
174 |
+
|
175 |
+
def __init__(self,
|
176 |
+
seq_len=60,
|
177 |
+
latent_dim=32,
|
178 |
+
text_latent_dim=512,
|
179 |
+
time_embed_dim=128,
|
180 |
+
ffn_dim=256,
|
181 |
+
num_head=4,
|
182 |
+
dropout=0.1):
|
183 |
+
super().__init__()
|
184 |
+
self.sa_block = LinearTemporalSelfAttention(
|
185 |
+
seq_len, latent_dim, num_head, dropout, time_embed_dim)
|
186 |
+
self.ca_block = LinearTemporalCrossAttention(
|
187 |
+
seq_len, latent_dim, text_latent_dim, num_head, dropout, time_embed_dim)
|
188 |
+
self.ffn = FFN(latent_dim, ffn_dim, dropout, time_embed_dim)
|
189 |
+
|
190 |
+
def forward(self, x, xf, emb, src_mask):
|
191 |
+
x = self.sa_block(x, emb, src_mask)
|
192 |
+
x = self.ca_block(x, xf, emb)
|
193 |
+
x = self.ffn(x, emb)
|
194 |
+
return x
|
195 |
+
|
196 |
+
class TemporalSelfAttention(nn.Module):
|
197 |
+
|
198 |
+
def __init__(self, seq_len, latent_dim, num_head, dropout, time_embed_dim):
|
199 |
+
super().__init__()
|
200 |
+
self.num_head = num_head
|
201 |
+
self.norm = nn.LayerNorm(latent_dim)
|
202 |
+
self.query = nn.Linear(latent_dim, latent_dim)
|
203 |
+
self.key = nn.Linear(latent_dim, latent_dim)
|
204 |
+
self.value = nn.Linear(latent_dim, latent_dim)
|
205 |
+
self.dropout = nn.Dropout(dropout)
|
206 |
+
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
|
207 |
+
|
208 |
+
def forward(self, x, emb, src_mask):
|
209 |
+
"""
|
210 |
+
x: B, T, D
|
211 |
+
"""
|
212 |
+
B, T, D = x.shape
|
213 |
+
H = self.num_head
|
214 |
+
# B, T, 1, D
|
215 |
+
query = self.query(self.norm(x)).unsqueeze(2)
|
216 |
+
# B, 1, T, D
|
217 |
+
key = self.key(self.norm(x)).unsqueeze(1)
|
218 |
+
query = query.view(B, T, H, -1)
|
219 |
+
key = key.view(B, T, H, -1)
|
220 |
+
# B, T, T, H
|
221 |
+
attention = torch.einsum('bnhd,bmhd->bnmh', query, key) / math.sqrt(D // H)
|
222 |
+
attention = attention + (1 - src_mask.unsqueeze(-1)) * -100000
|
223 |
+
weight = self.dropout(F.softmax(attention, dim=2))
|
224 |
+
value = self.value(self.norm(x)).view(B, T, H, -1)
|
225 |
+
y = torch.einsum('bnmh,bmhd->bnhd', weight, value).reshape(B, T, D)
|
226 |
+
y = x + self.proj_out(y, emb)
|
227 |
+
return y
|
228 |
+
|
229 |
+
class TemporalCrossAttention(nn.Module):
|
230 |
+
|
231 |
+
def __init__(self, seq_len, latent_dim, text_latent_dim, num_head, dropout, time_embed_dim):
|
232 |
+
super().__init__()
|
233 |
+
self.num_head = num_head
|
234 |
+
self.norm = nn.LayerNorm(latent_dim)
|
235 |
+
self.text_norm = nn.LayerNorm(text_latent_dim)
|
236 |
+
self.query = nn.Linear(latent_dim, latent_dim)
|
237 |
+
self.key = nn.Linear(text_latent_dim, latent_dim)
|
238 |
+
self.value = nn.Linear(text_latent_dim, latent_dim)
|
239 |
+
self.dropout = nn.Dropout(dropout)
|
240 |
+
self.proj_out = StylizationBlock(latent_dim, time_embed_dim, dropout)
|
241 |
+
|
242 |
+
def forward(self, x, xf, emb):
|
243 |
+
"""
|
244 |
+
x: B, T, D
|
245 |
+
xf: B, N, L
|
246 |
+
"""
|
247 |
+
B, T, D = x.shape
|
248 |
+
N = xf.shape[1]
|
249 |
+
H = self.num_head
|
250 |
+
# B, T, 1, D
|
251 |
+
query = self.query(self.norm(x)).unsqueeze(2)
|
252 |
+
# B, 1, N, D
|
253 |
+
key = self.key(self.text_norm(xf)).unsqueeze(1)
|
254 |
+
query = query.view(B, T, H, -1)
|
255 |
+
key = key.view(B, N, H, -1)
|
256 |
+
# B, T, N, H
|
257 |
+
attention = torch.einsum('bnhd,bmhd->bnmh', query, key) / math.sqrt(D // H)
|
258 |
+
weight = self.dropout(F.softmax(attention, dim=2))
|
259 |
+
value = self.value(self.text_norm(xf)).view(B, N, H, -1)
|
260 |
+
y = torch.einsum('bnmh,bmhd->bnhd', weight, value).reshape(B, T, D)
|
261 |
+
y = x + self.proj_out(y, emb)
|
262 |
+
return y
|
263 |
+
|
264 |
+
class TemporalDiffusionTransformerDecoderLayer(nn.Module):
|
265 |
+
|
266 |
+
def __init__(self,
|
267 |
+
seq_len=60,
|
268 |
+
latent_dim=32,
|
269 |
+
text_latent_dim=512,
|
270 |
+
time_embed_dim=128,
|
271 |
+
ffn_dim=256,
|
272 |
+
num_head=4,
|
273 |
+
dropout=0.1):
|
274 |
+
super().__init__()
|
275 |
+
self.sa_block = TemporalSelfAttention(
|
276 |
+
seq_len, latent_dim, num_head, dropout, time_embed_dim)
|
277 |
+
self.ca_block = TemporalCrossAttention(
|
278 |
+
seq_len, latent_dim, text_latent_dim, num_head, dropout, time_embed_dim)
|
279 |
+
self.ffn = FFN(latent_dim, ffn_dim, dropout, time_embed_dim)
|
280 |
+
|
281 |
+
def forward(self, x, xf, emb, src_mask):
|
282 |
+
x = self.sa_block(x, emb, src_mask)
|
283 |
+
x = self.ca_block(x, xf, emb)
|
284 |
+
x = self.ffn(x, emb)
|
285 |
+
return x
|
286 |
+
|
287 |
+
|
288 |
+
class MotionTransformer(nn.Module):
|
289 |
+
def __init__(self,
|
290 |
+
input_feats,
|
291 |
+
num_frames=240,
|
292 |
+
latent_dim=512,
|
293 |
+
ff_size=1024,
|
294 |
+
num_layers=8,
|
295 |
+
num_heads=8,
|
296 |
+
dropout=0,
|
297 |
+
activation="gelu",
|
298 |
+
num_text_layers=4,
|
299 |
+
text_latent_dim=256,
|
300 |
+
text_ff_size=2048,
|
301 |
+
text_num_heads=4,
|
302 |
+
no_clip=False,
|
303 |
+
no_eff=False,
|
304 |
+
**kargs):
|
305 |
+
super().__init__()
|
306 |
+
|
307 |
+
self.num_frames = num_frames
|
308 |
+
self.latent_dim = latent_dim
|
309 |
+
self.ff_size = ff_size
|
310 |
+
self.num_layers = num_layers
|
311 |
+
self.num_heads = num_heads
|
312 |
+
self.dropout = dropout
|
313 |
+
self.activation = activation
|
314 |
+
self.input_feats = input_feats
|
315 |
+
self.time_embed_dim = latent_dim * 4
|
316 |
+
self.sequence_embedding = nn.Parameter(torch.randn(num_frames, latent_dim))
|
317 |
+
|
318 |
+
# Text Transformer
|
319 |
+
self.clip, _ = clip.load('ViT-B/32', "cpu")
|
320 |
+
if no_clip:
|
321 |
+
self.clip.initialize_parameters()
|
322 |
+
else:
|
323 |
+
set_requires_grad(self.clip, False)
|
324 |
+
if text_latent_dim != 512:
|
325 |
+
self.text_pre_proj = nn.Linear(512, text_latent_dim)
|
326 |
+
else:
|
327 |
+
self.text_pre_proj = nn.Identity()
|
328 |
+
textTransEncoderLayer = nn.TransformerEncoderLayer(
|
329 |
+
d_model=text_latent_dim,
|
330 |
+
nhead=text_num_heads,
|
331 |
+
dim_feedforward=text_ff_size,
|
332 |
+
dropout=dropout,
|
333 |
+
activation=activation)
|
334 |
+
self.textTransEncoder = nn.TransformerEncoder(
|
335 |
+
textTransEncoderLayer,
|
336 |
+
num_layers=num_text_layers)
|
337 |
+
self.text_ln = nn.LayerNorm(text_latent_dim)
|
338 |
+
self.text_proj = nn.Sequential(
|
339 |
+
nn.Linear(text_latent_dim, self.time_embed_dim)
|
340 |
+
)
|
341 |
+
|
342 |
+
# Input Embedding
|
343 |
+
self.joint_embed = nn.Linear(self.input_feats, self.latent_dim)
|
344 |
+
|
345 |
+
self.time_embed = nn.Sequential(
|
346 |
+
nn.Linear(self.latent_dim, self.time_embed_dim),
|
347 |
+
nn.SiLU(),
|
348 |
+
nn.Linear(self.time_embed_dim, self.time_embed_dim),
|
349 |
+
)
|
350 |
+
self.temporal_decoder_blocks = nn.ModuleList()
|
351 |
+
for i in range(num_layers):
|
352 |
+
if no_eff:
|
353 |
+
self.temporal_decoder_blocks.append(
|
354 |
+
TemporalDiffusionTransformerDecoderLayer(
|
355 |
+
seq_len=num_frames,
|
356 |
+
latent_dim=latent_dim,
|
357 |
+
text_latent_dim=text_latent_dim,
|
358 |
+
time_embed_dim=self.time_embed_dim,
|
359 |
+
ffn_dim=ff_size,
|
360 |
+
num_head=num_heads,
|
361 |
+
dropout=dropout
|
362 |
+
)
|
363 |
+
)
|
364 |
+
else:
|
365 |
+
self.temporal_decoder_blocks.append(
|
366 |
+
LinearTemporalDiffusionTransformerDecoderLayer(
|
367 |
+
seq_len=num_frames,
|
368 |
+
latent_dim=latent_dim,
|
369 |
+
text_latent_dim=text_latent_dim,
|
370 |
+
time_embed_dim=self.time_embed_dim,
|
371 |
+
ffn_dim=ff_size,
|
372 |
+
num_head=num_heads,
|
373 |
+
dropout=dropout
|
374 |
+
)
|
375 |
+
)
|
376 |
+
|
377 |
+
# Output Module
|
378 |
+
self.out = zero_module(nn.Linear(self.latent_dim, self.input_feats))
|
379 |
+
|
380 |
+
def encode_text(self, text, device):
|
381 |
+
with torch.no_grad():
|
382 |
+
text = clip.tokenize(text, truncate=True).to(device)
|
383 |
+
x = self.clip.token_embedding(text).type(self.clip.dtype) # [batch_size, n_ctx, d_model]
|
384 |
+
|
385 |
+
x = x + self.clip.positional_embedding.type(self.clip.dtype)
|
386 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
387 |
+
x = self.clip.transformer(x)
|
388 |
+
x = self.clip.ln_final(x).type(self.clip.dtype)
|
389 |
+
|
390 |
+
# T, B, D
|
391 |
+
x = self.text_pre_proj(x)
|
392 |
+
xf_out = self.textTransEncoder(x)
|
393 |
+
xf_out = self.text_ln(xf_out)
|
394 |
+
xf_proj = self.text_proj(xf_out[text.argmax(dim=-1), torch.arange(xf_out.shape[1])])
|
395 |
+
# B, T, D
|
396 |
+
xf_out = xf_out.permute(1, 0, 2)
|
397 |
+
return xf_proj, xf_out
|
398 |
+
|
399 |
+
def generate_src_mask(self, T, length):
|
400 |
+
B = len(length)
|
401 |
+
src_mask = torch.ones(B, T)
|
402 |
+
for i in range(B):
|
403 |
+
for j in range(length[i], T):
|
404 |
+
src_mask[i, j] = 0
|
405 |
+
return src_mask
|
406 |
+
|
407 |
+
def forward(self, x, timesteps, length=None, text=None, xf_proj=None, xf_out=None):
|
408 |
+
"""
|
409 |
+
x: B, T, D
|
410 |
+
"""
|
411 |
+
B, T = x.shape[0], x.shape[1]
|
412 |
+
if xf_proj is None or xf_out is None:
|
413 |
+
xf_proj, xf_out = self.encode_text(text, x.device)
|
414 |
+
|
415 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.latent_dim)) + xf_proj
|
416 |
+
|
417 |
+
# B, T, latent_dim
|
418 |
+
h = self.joint_embed(x)
|
419 |
+
h = h + self.sequence_embedding.unsqueeze(0)[:, :T, :]
|
420 |
+
|
421 |
+
src_mask = self.generate_src_mask(T, length).to(x.device).unsqueeze(-1)
|
422 |
+
for module in self.temporal_decoder_blocks:
|
423 |
+
h = module(h, xf_out, emb, src_mask)
|
424 |
+
|
425 |
+
output = self.out(h).view(B, T, -1).contiguous()
|
426 |
+
return output
|
options/base_options.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from mmcv.runner import get_dist_info
|
5 |
+
import torch.distributed as dist
|
6 |
+
|
7 |
+
|
8 |
+
class BaseOptions():
|
9 |
+
def __init__(self):
|
10 |
+
self.parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
11 |
+
self.initialized = False
|
12 |
+
|
13 |
+
def initialize(self):
|
14 |
+
self.parser.add_argument('--name', type=str, default="test", help='Name of this trial')
|
15 |
+
self.parser.add_argument('--decomp_name', type=str, default="Decomp_SP001_SM001_H512", help='Name of autoencoder model')
|
16 |
+
|
17 |
+
self.parser.add_argument("--gpu_id", type=int, default=-1, help='GPU id')
|
18 |
+
self.parser.add_argument("--distributed", action="store_true", help='Weather to use DDP training')
|
19 |
+
|
20 |
+
self.parser.add_argument('--dataset_name', type=str, default='t2m', help='Dataset Name')
|
21 |
+
self.parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
|
22 |
+
|
23 |
+
self.parser.add_argument("--unit_length", type=int, default=4, help="Motions are cropped to the maximum times of unit_length")
|
24 |
+
self.parser.add_argument("--max_text_len", type=int, default=20, help="Maximum length of text description")
|
25 |
+
|
26 |
+
self.parser.add_argument('--text_enc_mod', type=str, default='bigru')
|
27 |
+
self.parser.add_argument('--estimator_mod', type=str, default='bigru')
|
28 |
+
|
29 |
+
self.parser.add_argument('--dim_text_hidden', type=int, default=512, help='Dimension of hidden unit in text encoder')
|
30 |
+
self.parser.add_argument('--dim_att_vec', type=int, default=512, help='Dimension of attention vector')
|
31 |
+
self.parser.add_argument('--dim_z', type=int, default=128, help='Dimension of latent Gaussian vector')
|
32 |
+
|
33 |
+
self.parser.add_argument('--n_layers_pri', type=int, default=1, help='Number of layers in prior network')
|
34 |
+
self.parser.add_argument('--n_layers_pos', type=int, default=1, help='Number of layers in posterior network')
|
35 |
+
self.parser.add_argument('--n_layers_dec', type=int, default=1, help='Number of layers in generator')
|
36 |
+
|
37 |
+
self.parser.add_argument('--dim_pri_hidden', type=int, default=1024, help='Dimension of hidden unit in prior network')
|
38 |
+
self.parser.add_argument('--dim_pos_hidden', type=int, default=1024, help='Dimension of hidden unit in posterior network')
|
39 |
+
self.parser.add_argument('--dim_dec_hidden', type=int, default=1024, help='Dimension of hidden unit in generator')
|
40 |
+
|
41 |
+
self.parser.add_argument('--dim_movement_enc_hidden', type=int, default=512,
|
42 |
+
help='Dimension of hidden in AutoEncoder(encoder)')
|
43 |
+
self.parser.add_argument('--dim_movement_dec_hidden', type=int, default=512,
|
44 |
+
help='Dimension of hidden in AutoEncoder(decoder)')
|
45 |
+
self.parser.add_argument('--dim_movement_latent', type=int, default=512, help='Dimension of motion snippet')
|
46 |
+
|
47 |
+
self.initialized = True
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
def parse(self):
|
52 |
+
if not self.initialized:
|
53 |
+
self.initialize()
|
54 |
+
|
55 |
+
self.opt = self.parser.parse_args()
|
56 |
+
|
57 |
+
self.opt.is_train = self.is_train
|
58 |
+
|
59 |
+
if self.opt.gpu_id != -1:
|
60 |
+
# self.opt.gpu_id = int(self.opt.gpu_id)
|
61 |
+
torch.cuda.set_device(self.opt.gpu_id)
|
62 |
+
|
63 |
+
args = vars(self.opt)
|
64 |
+
|
65 |
+
if args["distributed"]:
|
66 |
+
init_dist('slurm')
|
67 |
+
rank, world_size = get_dist_info()
|
68 |
+
if rank == 0:
|
69 |
+
print('------------ Options -------------')
|
70 |
+
for k, v in sorted(args.items()):
|
71 |
+
print('%s: %s' % (str(k), str(v)))
|
72 |
+
print('-------------- End ----------------')
|
73 |
+
if self.is_train:
|
74 |
+
# save to the disk
|
75 |
+
expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.dataset_name, self.opt.name)
|
76 |
+
if not os.path.exists(expr_dir):
|
77 |
+
os.makedirs(expr_dir)
|
78 |
+
file_name = os.path.join(expr_dir, 'opt.txt')
|
79 |
+
with open(file_name, 'wt') as opt_file:
|
80 |
+
opt_file.write('------------ Options -------------\n')
|
81 |
+
for k, v in sorted(args.items()):
|
82 |
+
opt_file.write('%s: %s\n' % (str(k), str(v)))
|
83 |
+
opt_file.write('-------------- End ----------------\n')
|
84 |
+
if world_size > 1:
|
85 |
+
dist.barrier()
|
86 |
+
return self.opt
|
options/evaluate_options.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from options.base_options import BaseOptions
|
2 |
+
|
3 |
+
|
4 |
+
class TestOptions(BaseOptions):
|
5 |
+
def initialize(self):
|
6 |
+
BaseOptions.initialize(self)
|
7 |
+
self.parser.add_argument('--batch_size', type=int, default=1, help='Batch size')
|
8 |
+
self.parser.add_argument('--start_mov_len', type=int, default=10)
|
9 |
+
self.parser.add_argument('--est_length', action="store_true", help="Whether to use sampled motion length")
|
10 |
+
self.parser.add_argument('--num_layers', type=int, default=8, help='num_layers of transformer')
|
11 |
+
self.parser.add_argument('--latent_dim', type=int, default=512, help='latent_dim of transformer')
|
12 |
+
self.parser.add_argument('--diffusion_steps', type=int, default=1000, help='diffusion_steps of transformer')
|
13 |
+
self.parser.add_argument('--no_clip', action='store_true', help='whether use clip pretrain')
|
14 |
+
self.parser.add_argument('--no_eff', action='store_true', help='whether use efficient attention')
|
15 |
+
|
16 |
+
|
17 |
+
self.parser.add_argument('--repeat_times', type=int, default=3, help="Number of generation rounds for each text description")
|
18 |
+
self.parser.add_argument('--split_file', type=str, default='test.txt')
|
19 |
+
self.parser.add_argument('--text', type=str, default="", help='Text description for motion generation')
|
20 |
+
self.parser.add_argument('--motion_length', type=int, default=0, help='Number of framese for motion generation')
|
21 |
+
self.parser.add_argument('--text_file', type=str, default="", help='Path of text description for motion generation')
|
22 |
+
self.parser.add_argument('--which_epoch', type=str, default="latest", help='Checkpoint that will be used')
|
23 |
+
self.parser.add_argument('--result_path', type=str, default="./eval_results/", help='Path to save generation results')
|
24 |
+
self.parser.add_argument('--num_results', type=int, default=40, help='Number of descriptions that will be used')
|
25 |
+
self.parser.add_argument('--ext', type=str, default='default', help='Save file path extension')
|
26 |
+
|
27 |
+
self.is_train = False
|
options/train_options.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from options.base_options import BaseOptions
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
class TrainCompOptions(BaseOptions):
|
5 |
+
def initialize(self):
|
6 |
+
BaseOptions.initialize(self)
|
7 |
+
self.parser.add_argument('--num_layers', type=int, default=8, help='num_layers of transformer')
|
8 |
+
self.parser.add_argument('--latent_dim', type=int, default=512, help='latent_dim of transformer')
|
9 |
+
self.parser.add_argument('--diffusion_steps', type=int, default=1000, help='diffusion_steps of transformer')
|
10 |
+
self.parser.add_argument('--no_clip', action='store_true', help='whether use clip pretrain')
|
11 |
+
self.parser.add_argument('--no_eff', action='store_true', help='whether use efficient attention')
|
12 |
+
|
13 |
+
self.parser.add_argument('--num_epochs', type=int, default=50, help='Number of epochs')
|
14 |
+
self.parser.add_argument('--lr', type=float, default=2e-4, help='Learning rate')
|
15 |
+
self.parser.add_argument('--batch_size', type=int, default=32, help='Batch size per GPU')
|
16 |
+
self.parser.add_argument('--times', type=int, default=1, help='times of dataset')
|
17 |
+
|
18 |
+
self.parser.add_argument('--feat_bias', type=float, default=5, help='Scales for global motion features and foot contact')
|
19 |
+
|
20 |
+
self.parser.add_argument('--is_continue', action="store_true", help='Is this trail continued from previous trail?')
|
21 |
+
|
22 |
+
self.parser.add_argument('--log_every', type=int, default=50, help='Frequency of printing training progress (by iteration)')
|
23 |
+
self.parser.add_argument('--save_every_e', type=int, default=5, help='Frequency of saving models (by epoch)')
|
24 |
+
self.parser.add_argument('--eval_every_e', type=int, default=5, help='Frequency of animation results (by epoch)')
|
25 |
+
self.parser.add_argument('--save_latest', type=int, default=500, help='Frequency of saving models (by iteration)')
|
26 |
+
self.is_train = True
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mmcv
|
2 |
+
matplotlib==3.3.1
|
3 |
+
torch==1.7.1
|
4 |
+
git+https://github.com/openai/CLIP.git
|
tools/evaluation.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datetime import datetime
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from datasets import get_dataset_motion_loader, get_motion_loader
|
5 |
+
from models import MotionTransformer
|
6 |
+
from utils.get_opt import get_opt
|
7 |
+
from utils.metrics import *
|
8 |
+
from datasets import EvaluatorModelWrapper
|
9 |
+
from collections import OrderedDict
|
10 |
+
from utils.plot_script import *
|
11 |
+
from utils import paramUtil
|
12 |
+
from utils.utils import *
|
13 |
+
from trainers import DDPMTrainer
|
14 |
+
|
15 |
+
from os.path import join as pjoin
|
16 |
+
import sys
|
17 |
+
|
18 |
+
|
19 |
+
def build_models(opt, dim_pose):
|
20 |
+
encoder = MotionTransformer(
|
21 |
+
input_feats=dim_pose,
|
22 |
+
num_frames=opt.max_motion_length,
|
23 |
+
num_layers=opt.num_layers,
|
24 |
+
latent_dim=opt.latent_dim,
|
25 |
+
no_clip=opt.no_clip,
|
26 |
+
no_eff=opt.no_eff)
|
27 |
+
return encoder
|
28 |
+
|
29 |
+
|
30 |
+
torch.multiprocessing.set_sharing_strategy('file_system')
|
31 |
+
|
32 |
+
|
33 |
+
def evaluate_matching_score(motion_loaders, file):
|
34 |
+
match_score_dict = OrderedDict({})
|
35 |
+
R_precision_dict = OrderedDict({})
|
36 |
+
activation_dict = OrderedDict({})
|
37 |
+
# print(motion_loaders.keys())
|
38 |
+
print('========== Evaluating Matching Score ==========')
|
39 |
+
for motion_loader_name, motion_loader in motion_loaders.items():
|
40 |
+
all_motion_embeddings = []
|
41 |
+
score_list = []
|
42 |
+
all_size = 0
|
43 |
+
matching_score_sum = 0
|
44 |
+
top_k_count = 0
|
45 |
+
# print(motion_loader_name)
|
46 |
+
with torch.no_grad():
|
47 |
+
for idx, batch in enumerate(motion_loader):
|
48 |
+
word_embeddings, pos_one_hots, _, sent_lens, motions, m_lens, _ = batch
|
49 |
+
text_embeddings, motion_embeddings = eval_wrapper.get_co_embeddings(
|
50 |
+
word_embs=word_embeddings,
|
51 |
+
pos_ohot=pos_one_hots,
|
52 |
+
cap_lens=sent_lens,
|
53 |
+
motions=motions,
|
54 |
+
m_lens=m_lens
|
55 |
+
)
|
56 |
+
dist_mat = euclidean_distance_matrix(text_embeddings.cpu().numpy(),
|
57 |
+
motion_embeddings.cpu().numpy())
|
58 |
+
matching_score_sum += dist_mat.trace()
|
59 |
+
|
60 |
+
argsmax = np.argsort(dist_mat, axis=1)
|
61 |
+
top_k_mat = calculate_top_k(argsmax, top_k=3)
|
62 |
+
top_k_count += top_k_mat.sum(axis=0)
|
63 |
+
|
64 |
+
all_size += text_embeddings.shape[0]
|
65 |
+
|
66 |
+
all_motion_embeddings.append(motion_embeddings.cpu().numpy())
|
67 |
+
|
68 |
+
all_motion_embeddings = np.concatenate(all_motion_embeddings, axis=0)
|
69 |
+
matching_score = matching_score_sum / all_size
|
70 |
+
R_precision = top_k_count / all_size
|
71 |
+
match_score_dict[motion_loader_name] = matching_score
|
72 |
+
R_precision_dict[motion_loader_name] = R_precision
|
73 |
+
activation_dict[motion_loader_name] = all_motion_embeddings
|
74 |
+
|
75 |
+
print(f'---> [{motion_loader_name}] Matching Score: {matching_score:.4f}')
|
76 |
+
print(f'---> [{motion_loader_name}] Matching Score: {matching_score:.4f}', file=file, flush=True)
|
77 |
+
|
78 |
+
line = f'---> [{motion_loader_name}] R_precision: '
|
79 |
+
for i in range(len(R_precision)):
|
80 |
+
line += '(top %d): %.4f ' % (i+1, R_precision[i])
|
81 |
+
print(line)
|
82 |
+
print(line, file=file, flush=True)
|
83 |
+
|
84 |
+
return match_score_dict, R_precision_dict, activation_dict
|
85 |
+
|
86 |
+
|
87 |
+
def evaluate_fid(groundtruth_loader, activation_dict, file):
|
88 |
+
eval_dict = OrderedDict({})
|
89 |
+
gt_motion_embeddings = []
|
90 |
+
print('========== Evaluating FID ==========')
|
91 |
+
with torch.no_grad():
|
92 |
+
for idx, batch in enumerate(groundtruth_loader):
|
93 |
+
_, _, _, sent_lens, motions, m_lens, _ = batch
|
94 |
+
motion_embeddings = eval_wrapper.get_motion_embeddings(
|
95 |
+
motions=motions,
|
96 |
+
m_lens=m_lens
|
97 |
+
)
|
98 |
+
gt_motion_embeddings.append(motion_embeddings.cpu().numpy())
|
99 |
+
gt_motion_embeddings = np.concatenate(gt_motion_embeddings, axis=0)
|
100 |
+
gt_mu, gt_cov = calculate_activation_statistics(gt_motion_embeddings)
|
101 |
+
|
102 |
+
# print(gt_mu)
|
103 |
+
for model_name, motion_embeddings in activation_dict.items():
|
104 |
+
mu, cov = calculate_activation_statistics(motion_embeddings)
|
105 |
+
# print(mu)
|
106 |
+
fid = calculate_frechet_distance(gt_mu, gt_cov, mu, cov)
|
107 |
+
print(f'---> [{model_name}] FID: {fid:.4f}')
|
108 |
+
print(f'---> [{model_name}] FID: {fid:.4f}', file=file, flush=True)
|
109 |
+
eval_dict[model_name] = fid
|
110 |
+
return eval_dict
|
111 |
+
|
112 |
+
|
113 |
+
def evaluate_diversity(activation_dict, file):
|
114 |
+
eval_dict = OrderedDict({})
|
115 |
+
print('========== Evaluating Diversity ==========')
|
116 |
+
for model_name, motion_embeddings in activation_dict.items():
|
117 |
+
diversity = calculate_diversity(motion_embeddings, diversity_times)
|
118 |
+
eval_dict[model_name] = diversity
|
119 |
+
print(f'---> [{model_name}] Diversity: {diversity:.4f}')
|
120 |
+
print(f'---> [{model_name}] Diversity: {diversity:.4f}', file=file, flush=True)
|
121 |
+
return eval_dict
|
122 |
+
|
123 |
+
|
124 |
+
def evaluate_multimodality(mm_motion_loaders, file):
|
125 |
+
eval_dict = OrderedDict({})
|
126 |
+
print('========== Evaluating MultiModality ==========')
|
127 |
+
for model_name, mm_motion_loader in mm_motion_loaders.items():
|
128 |
+
mm_motion_embeddings = []
|
129 |
+
with torch.no_grad():
|
130 |
+
for idx, batch in enumerate(mm_motion_loader):
|
131 |
+
# (1, mm_replications, dim_pos)
|
132 |
+
motions, m_lens = batch
|
133 |
+
motion_embedings = eval_wrapper.get_motion_embeddings(motions[0], m_lens[0])
|
134 |
+
mm_motion_embeddings.append(motion_embedings.unsqueeze(0))
|
135 |
+
if len(mm_motion_embeddings) == 0:
|
136 |
+
multimodality = 0
|
137 |
+
else:
|
138 |
+
mm_motion_embeddings = torch.cat(mm_motion_embeddings, dim=0).cpu().numpy()
|
139 |
+
multimodality = calculate_multimodality(mm_motion_embeddings, mm_num_times)
|
140 |
+
print(f'---> [{model_name}] Multimodality: {multimodality:.4f}')
|
141 |
+
print(f'---> [{model_name}] Multimodality: {multimodality:.4f}', file=file, flush=True)
|
142 |
+
eval_dict[model_name] = multimodality
|
143 |
+
return eval_dict
|
144 |
+
|
145 |
+
|
146 |
+
def get_metric_statistics(values):
|
147 |
+
mean = np.mean(values, axis=0)
|
148 |
+
std = np.std(values, axis=0)
|
149 |
+
conf_interval = 1.96 * std / np.sqrt(replication_times)
|
150 |
+
return mean, conf_interval
|
151 |
+
|
152 |
+
|
153 |
+
def evaluation(log_file):
|
154 |
+
with open(log_file, 'w') as f:
|
155 |
+
all_metrics = OrderedDict({'Matching Score': OrderedDict({}),
|
156 |
+
'R_precision': OrderedDict({}),
|
157 |
+
'FID': OrderedDict({}),
|
158 |
+
'Diversity': OrderedDict({}),
|
159 |
+
'MultiModality': OrderedDict({})})
|
160 |
+
for replication in range(replication_times):
|
161 |
+
motion_loaders = {}
|
162 |
+
mm_motion_loaders = {}
|
163 |
+
motion_loaders['ground truth'] = gt_loader
|
164 |
+
for motion_loader_name, motion_loader_getter in eval_motion_loaders.items():
|
165 |
+
motion_loader, mm_motion_loader = motion_loader_getter()
|
166 |
+
motion_loaders[motion_loader_name] = motion_loader
|
167 |
+
mm_motion_loaders[motion_loader_name] = mm_motion_loader
|
168 |
+
|
169 |
+
print(f'==================== Replication {replication} ====================')
|
170 |
+
print(f'==================== Replication {replication} ====================', file=f, flush=True)
|
171 |
+
print(f'Time: {datetime.now()}')
|
172 |
+
print(f'Time: {datetime.now()}', file=f, flush=True)
|
173 |
+
mat_score_dict, R_precision_dict, acti_dict = evaluate_matching_score(motion_loaders, f)
|
174 |
+
|
175 |
+
print(f'Time: {datetime.now()}')
|
176 |
+
print(f'Time: {datetime.now()}', file=f, flush=True)
|
177 |
+
fid_score_dict = evaluate_fid(gt_loader, acti_dict, f)
|
178 |
+
|
179 |
+
print(f'Time: {datetime.now()}')
|
180 |
+
print(f'Time: {datetime.now()}', file=f, flush=True)
|
181 |
+
div_score_dict = evaluate_diversity(acti_dict, f)
|
182 |
+
|
183 |
+
print(f'Time: {datetime.now()}')
|
184 |
+
print(f'Time: {datetime.now()}', file=f, flush=True)
|
185 |
+
mm_score_dict = evaluate_multimodality(mm_motion_loaders, f)
|
186 |
+
|
187 |
+
print(f'!!! DONE !!!')
|
188 |
+
print(f'!!! DONE !!!', file=f, flush=True)
|
189 |
+
|
190 |
+
for key, item in mat_score_dict.items():
|
191 |
+
if key not in all_metrics['Matching Score']:
|
192 |
+
all_metrics['Matching Score'][key] = [item]
|
193 |
+
else:
|
194 |
+
all_metrics['Matching Score'][key] += [item]
|
195 |
+
|
196 |
+
for key, item in R_precision_dict.items():
|
197 |
+
if key not in all_metrics['R_precision']:
|
198 |
+
all_metrics['R_precision'][key] = [item]
|
199 |
+
else:
|
200 |
+
all_metrics['R_precision'][key] += [item]
|
201 |
+
|
202 |
+
for key, item in fid_score_dict.items():
|
203 |
+
if key not in all_metrics['FID']:
|
204 |
+
all_metrics['FID'][key] = [item]
|
205 |
+
else:
|
206 |
+
all_metrics['FID'][key] += [item]
|
207 |
+
|
208 |
+
for key, item in div_score_dict.items():
|
209 |
+
if key not in all_metrics['Diversity']:
|
210 |
+
all_metrics['Diversity'][key] = [item]
|
211 |
+
else:
|
212 |
+
all_metrics['Diversity'][key] += [item]
|
213 |
+
|
214 |
+
for key, item in mm_score_dict.items():
|
215 |
+
if key not in all_metrics['MultiModality']:
|
216 |
+
all_metrics['MultiModality'][key] = [item]
|
217 |
+
else:
|
218 |
+
all_metrics['MultiModality'][key] += [item]
|
219 |
+
|
220 |
+
|
221 |
+
# print(all_metrics['Diversity'])
|
222 |
+
for metric_name, metric_dict in all_metrics.items():
|
223 |
+
print('========== %s Summary ==========' % metric_name)
|
224 |
+
print('========== %s Summary ==========' % metric_name, file=f, flush=True)
|
225 |
+
|
226 |
+
for model_name, values in metric_dict.items():
|
227 |
+
# print(metric_name, model_name)
|
228 |
+
mean, conf_interval = get_metric_statistics(np.array(values))
|
229 |
+
# print(mean, mean.dtype)
|
230 |
+
if isinstance(mean, np.float64) or isinstance(mean, np.float32):
|
231 |
+
print(f'---> [{model_name}] Mean: {mean:.4f} CInterval: {conf_interval:.4f}')
|
232 |
+
print(f'---> [{model_name}] Mean: {mean:.4f} CInterval: {conf_interval:.4f}', file=f, flush=True)
|
233 |
+
elif isinstance(mean, np.ndarray):
|
234 |
+
line = f'---> [{model_name}]'
|
235 |
+
for i in range(len(mean)):
|
236 |
+
line += '(top %d) Mean: %.4f CInt: %.4f;' % (i+1, mean[i], conf_interval[i])
|
237 |
+
print(line)
|
238 |
+
print(line, file=f, flush=True)
|
239 |
+
|
240 |
+
|
241 |
+
if __name__ == '__main__':
|
242 |
+
mm_num_samples = 100
|
243 |
+
mm_num_repeats = 30
|
244 |
+
mm_num_times = 10
|
245 |
+
|
246 |
+
diversity_times = 300
|
247 |
+
replication_times = 1
|
248 |
+
batch_size = 32
|
249 |
+
opt_path = sys.argv[1]
|
250 |
+
dataset_opt_path = opt_path
|
251 |
+
|
252 |
+
try:
|
253 |
+
device_id = int(sys.argv[2])
|
254 |
+
except:
|
255 |
+
device_id = 0
|
256 |
+
device = torch.device('cuda:%d' % device_id if torch.cuda.is_available() else 'cpu')
|
257 |
+
torch.cuda.set_device(device_id)
|
258 |
+
|
259 |
+
gt_loader, gt_dataset = get_dataset_motion_loader(dataset_opt_path, batch_size, device)
|
260 |
+
wrapper_opt = get_opt(dataset_opt_path, device)
|
261 |
+
eval_wrapper = EvaluatorModelWrapper(wrapper_opt)
|
262 |
+
|
263 |
+
opt = get_opt(opt_path, device)
|
264 |
+
encoder = build_models(opt, opt.dim_pose)
|
265 |
+
trainer = DDPMTrainer(opt, encoder)
|
266 |
+
eval_motion_loaders = {
|
267 |
+
'text2motion': lambda: get_motion_loader(
|
268 |
+
opt,
|
269 |
+
batch_size,
|
270 |
+
trainer,
|
271 |
+
gt_dataset,
|
272 |
+
mm_num_samples,
|
273 |
+
mm_num_repeats
|
274 |
+
)
|
275 |
+
}
|
276 |
+
|
277 |
+
log_file = './t2m_evaluation.log'
|
278 |
+
evaluation(log_file)
|
tools/train.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from os.path import join as pjoin
|
3 |
+
|
4 |
+
import utils.paramUtil as paramUtil
|
5 |
+
from options.train_options import TrainCompOptions
|
6 |
+
from utils.plot_script import *
|
7 |
+
|
8 |
+
from models import MotionTransformer
|
9 |
+
from trainers import DDPMTrainer
|
10 |
+
from datasets import Text2MotionDataset
|
11 |
+
|
12 |
+
from mmcv.runner import get_dist_info, init_dist
|
13 |
+
from mmcv.parallel import MMDistributedDataParallel
|
14 |
+
import torch
|
15 |
+
import torch.distributed as dist
|
16 |
+
|
17 |
+
|
18 |
+
def build_models(opt, dim_pose):
|
19 |
+
encoder = MotionTransformer(
|
20 |
+
input_feats=dim_pose,
|
21 |
+
num_frames=opt.max_motion_length,
|
22 |
+
num_layers=opt.num_layers,
|
23 |
+
latent_dim=opt.latent_dim,
|
24 |
+
no_clip=opt.no_clip,
|
25 |
+
no_eff=opt.no_eff)
|
26 |
+
return encoder
|
27 |
+
|
28 |
+
|
29 |
+
if __name__ == '__main__':
|
30 |
+
parser = TrainCompOptions()
|
31 |
+
opt = parser.parse()
|
32 |
+
rank, world_size = get_dist_info()
|
33 |
+
|
34 |
+
opt.device = torch.device("cuda")
|
35 |
+
torch.autograd.set_detect_anomaly(True)
|
36 |
+
|
37 |
+
opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
|
38 |
+
opt.model_dir = pjoin(opt.save_root, 'model')
|
39 |
+
opt.meta_dir = pjoin(opt.save_root, 'meta')
|
40 |
+
|
41 |
+
if rank == 0:
|
42 |
+
os.makedirs(opt.model_dir, exist_ok=True)
|
43 |
+
os.makedirs(opt.meta_dir, exist_ok=True)
|
44 |
+
if world_size > 1:
|
45 |
+
dist.barrier()
|
46 |
+
|
47 |
+
if opt.dataset_name == 't2m':
|
48 |
+
opt.data_root = './data/HumanML3D'
|
49 |
+
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
|
50 |
+
opt.text_dir = pjoin(opt.data_root, 'texts')
|
51 |
+
opt.joints_num = 22
|
52 |
+
radius = 4
|
53 |
+
fps = 20
|
54 |
+
opt.max_motion_length = 196
|
55 |
+
dim_pose = 263
|
56 |
+
kinematic_chain = paramUtil.t2m_kinematic_chain
|
57 |
+
elif opt.dataset_name == 'kit':
|
58 |
+
opt.data_root = './data/KIT-ML'
|
59 |
+
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
|
60 |
+
opt.text_dir = pjoin(opt.data_root, 'texts')
|
61 |
+
opt.joints_num = 21
|
62 |
+
radius = 240 * 8
|
63 |
+
fps = 12.5
|
64 |
+
dim_pose = 251
|
65 |
+
opt.max_motion_length = 196
|
66 |
+
kinematic_chain = paramUtil.kit_kinematic_chain
|
67 |
+
|
68 |
+
else:
|
69 |
+
raise KeyError('Dataset Does Not Exist')
|
70 |
+
|
71 |
+
dim_word = 300
|
72 |
+
mean = np.load(pjoin(opt.data_root, 'Mean.npy'))
|
73 |
+
std = np.load(pjoin(opt.data_root, 'Std.npy'))
|
74 |
+
|
75 |
+
train_split_file = pjoin(opt.data_root, 'train.txt')
|
76 |
+
|
77 |
+
encoder = build_models(opt, dim_pose)
|
78 |
+
if world_size > 1:
|
79 |
+
encoder = MMDistributedDataParallel(
|
80 |
+
encoder.cuda(),
|
81 |
+
device_ids=[torch.cuda.current_device()],
|
82 |
+
broadcast_buffers=False,
|
83 |
+
find_unused_parameters=True)
|
84 |
+
else:
|
85 |
+
encoder = encoder.cuda()
|
86 |
+
|
87 |
+
trainer = DDPMTrainer(opt, encoder)
|
88 |
+
train_dataset = Text2MotionDataset(opt, mean, std, train_split_file, opt.times)
|
89 |
+
trainer.train(train_dataset)
|
tools/visualization.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import argparse
|
4 |
+
|
5 |
+
import utils.paramUtil as paramUtil
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
from utils.plot_script import *
|
8 |
+
|
9 |
+
from utils.utils import *
|
10 |
+
from utils.motion_process import recover_from_ric
|
11 |
+
|
12 |
+
|
13 |
+
def plot_t2m(opt, data, result_path, caption):
|
14 |
+
joint = recover_from_ric(torch.from_numpy(data).float(), opt.joints_num).numpy()
|
15 |
+
# joint = motion_temporal_filter(joint, sigma=1)
|
16 |
+
plot_3d_motion(result_path, paramUtil.t2m_kinematic_chain, joint, title=caption, fps=20)
|
17 |
+
|
18 |
+
|
19 |
+
def process(trainer, opt, device, mean, std, text, motion_length, result_path):
|
20 |
+
|
21 |
+
result_dict = {}
|
22 |
+
with torch.no_grad():
|
23 |
+
if motion_length != -1:
|
24 |
+
caption = [text]
|
25 |
+
m_lens = torch.LongTensor([motion_length]).to(device)
|
26 |
+
pred_motions = trainer.generate(caption, m_lens, opt.dim_pose)
|
27 |
+
motion = pred_motions[0].cpu().numpy()
|
28 |
+
motion = motion * std + mean
|
29 |
+
title = text + " #%d" % motion.shape[0]
|
30 |
+
plot_t2m(opt, motion, result_path, title)
|
trainers/__init__.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .ddpm_trainer import DDPMTrainer
|
2 |
+
|
3 |
+
|
4 |
+
__all__ = ['DDPMTrainer']
|
trainers/ddpm_trainer.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import random
|
4 |
+
import time
|
5 |
+
from models.transformer import MotionTransformer
|
6 |
+
from torch.utils.data import DataLoader
|
7 |
+
import torch.optim as optim
|
8 |
+
from torch.nn.utils import clip_grad_norm_
|
9 |
+
from collections import OrderedDict
|
10 |
+
from utils.utils import print_current_loss
|
11 |
+
from os.path import join as pjoin
|
12 |
+
import codecs as cs
|
13 |
+
import torch.distributed as dist
|
14 |
+
|
15 |
+
|
16 |
+
from mmcv.runner import get_dist_info
|
17 |
+
from models.gaussian_diffusion import (
|
18 |
+
GaussianDiffusion,
|
19 |
+
get_named_beta_schedule,
|
20 |
+
create_named_schedule_sampler,
|
21 |
+
ModelMeanType,
|
22 |
+
ModelVarType,
|
23 |
+
LossType
|
24 |
+
)
|
25 |
+
|
26 |
+
from datasets import build_dataloader
|
27 |
+
|
28 |
+
|
29 |
+
class DDPMTrainer(object):
|
30 |
+
|
31 |
+
def __init__(self, args, encoder):
|
32 |
+
self.opt = args
|
33 |
+
self.device = args.device
|
34 |
+
self.encoder = encoder
|
35 |
+
self.diffusion_steps = args.diffusion_steps
|
36 |
+
sampler = 'uniform'
|
37 |
+
beta_scheduler = 'linear'
|
38 |
+
betas = get_named_beta_schedule(beta_scheduler, self.diffusion_steps)
|
39 |
+
self.diffusion = GaussianDiffusion(
|
40 |
+
betas=betas,
|
41 |
+
model_mean_type=ModelMeanType.EPSILON,
|
42 |
+
model_var_type=ModelVarType.FIXED_SMALL,
|
43 |
+
loss_type=LossType.MSE
|
44 |
+
)
|
45 |
+
self.sampler = create_named_schedule_sampler(sampler, self.diffusion)
|
46 |
+
self.sampler_name = sampler
|
47 |
+
|
48 |
+
if args.is_train:
|
49 |
+
self.mse_criterion = torch.nn.MSELoss(reduction='none')
|
50 |
+
self.to(self.device)
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def zero_grad(opt_list):
|
54 |
+
for opt in opt_list:
|
55 |
+
opt.zero_grad()
|
56 |
+
|
57 |
+
@staticmethod
|
58 |
+
def clip_norm(network_list):
|
59 |
+
for network in network_list:
|
60 |
+
clip_grad_norm_(network.parameters(), 0.5)
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def step(opt_list):
|
64 |
+
for opt in opt_list:
|
65 |
+
opt.step()
|
66 |
+
|
67 |
+
def forward(self, batch_data, eval_mode=False):
|
68 |
+
caption, motions, m_lens = batch_data
|
69 |
+
motions = motions.detach().to(self.device).float()
|
70 |
+
|
71 |
+
self.caption = caption
|
72 |
+
self.motions = motions
|
73 |
+
x_start = motions
|
74 |
+
B, T = x_start.shape[:2]
|
75 |
+
cur_len = torch.LongTensor([min(T, m_len) for m_len in m_lens]).to(self.device)
|
76 |
+
t, _ = self.sampler.sample(B, x_start.device)
|
77 |
+
output = self.diffusion.training_losses(
|
78 |
+
model=self.encoder,
|
79 |
+
x_start=x_start,
|
80 |
+
t=t,
|
81 |
+
model_kwargs={"text": caption, "length": cur_len}
|
82 |
+
)
|
83 |
+
|
84 |
+
self.real_noise = output['target']
|
85 |
+
self.fake_noise = output['pred']
|
86 |
+
try:
|
87 |
+
self.src_mask = self.encoder.module.generate_src_mask(T, cur_len).to(x_start.device)
|
88 |
+
except:
|
89 |
+
self.src_mask = self.encoder.generate_src_mask(T, cur_len).to(x_start.device)
|
90 |
+
|
91 |
+
def generate_batch(self, caption, m_lens, dim_pose):
|
92 |
+
xf_proj, xf_out = self.encoder.encode_text(caption, self.device)
|
93 |
+
|
94 |
+
B = len(caption)
|
95 |
+
T = min(m_lens.max(), self.encoder.num_frames)
|
96 |
+
output = self.diffusion.p_sample_loop(
|
97 |
+
self.encoder,
|
98 |
+
(B, T, dim_pose),
|
99 |
+
clip_denoised=False,
|
100 |
+
progress=True,
|
101 |
+
model_kwargs={
|
102 |
+
'xf_proj': xf_proj,
|
103 |
+
'xf_out': xf_out,
|
104 |
+
'length': m_lens
|
105 |
+
})
|
106 |
+
return output
|
107 |
+
|
108 |
+
def generate(self, caption, m_lens, dim_pose, batch_size=1024):
|
109 |
+
N = len(caption)
|
110 |
+
cur_idx = 0
|
111 |
+
self.encoder.eval()
|
112 |
+
all_output = []
|
113 |
+
while cur_idx < N:
|
114 |
+
if cur_idx + batch_size >= N:
|
115 |
+
batch_caption = caption[cur_idx:]
|
116 |
+
batch_m_lens = m_lens[cur_idx:]
|
117 |
+
else:
|
118 |
+
batch_caption = caption[cur_idx: cur_idx + batch_size]
|
119 |
+
batch_m_lens = m_lens[cur_idx: cur_idx + batch_size]
|
120 |
+
output = self.generate_batch(batch_caption, batch_m_lens, dim_pose)
|
121 |
+
B = output.shape[0]
|
122 |
+
|
123 |
+
for i in range(B):
|
124 |
+
all_output.append(output[i])
|
125 |
+
cur_idx += batch_size
|
126 |
+
return all_output
|
127 |
+
|
128 |
+
def backward_G(self):
|
129 |
+
loss_mot_rec = self.mse_criterion(self.fake_noise, self.real_noise).mean(dim=-1)
|
130 |
+
loss_mot_rec = (loss_mot_rec * self.src_mask).sum() / self.src_mask.sum()
|
131 |
+
self.loss_mot_rec = loss_mot_rec
|
132 |
+
loss_logs = OrderedDict({})
|
133 |
+
loss_logs['loss_mot_rec'] = self.loss_mot_rec.item()
|
134 |
+
return loss_logs
|
135 |
+
|
136 |
+
def update(self):
|
137 |
+
self.zero_grad([self.opt_encoder])
|
138 |
+
loss_logs = self.backward_G()
|
139 |
+
self.loss_mot_rec.backward()
|
140 |
+
self.clip_norm([self.encoder])
|
141 |
+
self.step([self.opt_encoder])
|
142 |
+
|
143 |
+
return loss_logs
|
144 |
+
|
145 |
+
def to(self, device):
|
146 |
+
if self.opt.is_train:
|
147 |
+
self.mse_criterion.to(device)
|
148 |
+
self.encoder = self.encoder.to(device)
|
149 |
+
|
150 |
+
def train_mode(self):
|
151 |
+
self.encoder.train()
|
152 |
+
|
153 |
+
def eval_mode(self):
|
154 |
+
self.encoder.eval()
|
155 |
+
|
156 |
+
def save(self, file_name, ep, total_it):
|
157 |
+
state = {
|
158 |
+
'opt_encoder': self.opt_encoder.state_dict(),
|
159 |
+
'ep': ep,
|
160 |
+
'total_it': total_it
|
161 |
+
}
|
162 |
+
try:
|
163 |
+
state['encoder'] = self.encoder.module.state_dict()
|
164 |
+
except:
|
165 |
+
state['encoder'] = self.encoder.state_dict()
|
166 |
+
torch.save(state, file_name)
|
167 |
+
return
|
168 |
+
|
169 |
+
def load(self, model_dir):
|
170 |
+
checkpoint = torch.load(model_dir, map_location=self.device)
|
171 |
+
if self.opt.is_train:
|
172 |
+
self.opt_encoder.load_state_dict(checkpoint['opt_encoder'])
|
173 |
+
self.encoder.load_state_dict(checkpoint['encoder'], strict=True)
|
174 |
+
return checkpoint['ep'], checkpoint.get('total_it', 0)
|
175 |
+
|
176 |
+
def train(self, train_dataset):
|
177 |
+
rank, world_size = get_dist_info()
|
178 |
+
self.to(self.device)
|
179 |
+
self.opt_encoder = optim.Adam(self.encoder.parameters(), lr=self.opt.lr)
|
180 |
+
it = 0
|
181 |
+
cur_epoch = 0
|
182 |
+
if self.opt.is_continue:
|
183 |
+
model_dir = pjoin(self.opt.model_dir, 'latest.tar')
|
184 |
+
cur_epoch, it = self.load(model_dir)
|
185 |
+
|
186 |
+
start_time = time.time()
|
187 |
+
|
188 |
+
train_loader = build_dataloader(
|
189 |
+
train_dataset,
|
190 |
+
samples_per_gpu=self.opt.batch_size,
|
191 |
+
drop_last=True,
|
192 |
+
workers_per_gpu=4,
|
193 |
+
shuffle=True)
|
194 |
+
|
195 |
+
logs = OrderedDict()
|
196 |
+
for epoch in range(cur_epoch, self.opt.num_epochs):
|
197 |
+
self.train_mode()
|
198 |
+
for i, batch_data in enumerate(train_loader):
|
199 |
+
self.forward(batch_data)
|
200 |
+
log_dict = self.update()
|
201 |
+
for k, v in log_dict.items():
|
202 |
+
if k not in logs:
|
203 |
+
logs[k] = v
|
204 |
+
else:
|
205 |
+
logs[k] += v
|
206 |
+
it += 1
|
207 |
+
if it % self.opt.log_every == 0 and rank == 0:
|
208 |
+
mean_loss = OrderedDict({})
|
209 |
+
for tag, value in logs.items():
|
210 |
+
mean_loss[tag] = value / self.opt.log_every
|
211 |
+
logs = OrderedDict()
|
212 |
+
print_current_loss(start_time, it, mean_loss, epoch, inner_iter=i)
|
213 |
+
|
214 |
+
if it % self.opt.save_latest == 0 and rank == 0:
|
215 |
+
self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
|
216 |
+
|
217 |
+
if rank == 0:
|
218 |
+
self.save(pjoin(self.opt.model_dir, 'latest.tar'), epoch, it)
|
219 |
+
|
220 |
+
if epoch % self.opt.save_every_e == 0 and rank == 0:
|
221 |
+
self.save(pjoin(self.opt.model_dir, 'ckpt_e%03d.tar'%(epoch)),
|
222 |
+
epoch, total_it=it)
|
utils/__init__.py
ADDED
File without changes
|
utils/get_opt.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from argparse import Namespace
|
3 |
+
import re
|
4 |
+
from os.path import join as pjoin
|
5 |
+
from utils.word_vectorizer import POS_enumerator
|
6 |
+
|
7 |
+
|
8 |
+
def is_float(numStr):
|
9 |
+
flag = False
|
10 |
+
numStr = str(numStr).strip().lstrip('-').lstrip('+')
|
11 |
+
try:
|
12 |
+
reg = re.compile(r'^[-+]?[0-9]+\.[0-9]+$')
|
13 |
+
res = reg.match(str(numStr))
|
14 |
+
if res:
|
15 |
+
flag = True
|
16 |
+
except Exception as ex:
|
17 |
+
print("is_float() - error: " + str(ex))
|
18 |
+
return flag
|
19 |
+
|
20 |
+
|
21 |
+
def is_number(numStr):
|
22 |
+
flag = False
|
23 |
+
numStr = str(numStr).strip().lstrip('-').lstrip('+')
|
24 |
+
if str(numStr).isdigit():
|
25 |
+
flag = True
|
26 |
+
return flag
|
27 |
+
|
28 |
+
|
29 |
+
def get_opt(opt_path, device):
|
30 |
+
opt = Namespace()
|
31 |
+
opt_dict = vars(opt)
|
32 |
+
|
33 |
+
skip = ('-------------- End ----------------',
|
34 |
+
'------------ Options -------------',
|
35 |
+
'\n')
|
36 |
+
print('Reading', opt_path)
|
37 |
+
with open(opt_path) as f:
|
38 |
+
for line in f:
|
39 |
+
if line.strip() not in skip:
|
40 |
+
# print(line.strip())
|
41 |
+
key, value = line.strip().split(': ')
|
42 |
+
if value in ('True', 'False'):
|
43 |
+
opt_dict[key] = True if value == 'True' else False
|
44 |
+
elif is_float(value):
|
45 |
+
opt_dict[key] = float(value)
|
46 |
+
elif is_number(value):
|
47 |
+
opt_dict[key] = int(value)
|
48 |
+
else:
|
49 |
+
opt_dict[key] = str(value)
|
50 |
+
|
51 |
+
opt_dict['which_epoch'] = 'latest'
|
52 |
+
if 'num_layers' not in opt_dict:
|
53 |
+
opt_dict['num_layers'] = 8
|
54 |
+
if 'latent_dim' not in opt_dict:
|
55 |
+
opt_dict['latent_dim'] = 512
|
56 |
+
if 'diffusion_steps' not in opt_dict:
|
57 |
+
opt_dict['diffusion_steps'] = 1000
|
58 |
+
if 'no_clip' not in opt_dict:
|
59 |
+
opt_dict['no_clip'] = False
|
60 |
+
if 'no_eff' not in opt_dict:
|
61 |
+
opt_dict['no_eff'] = False
|
62 |
+
|
63 |
+
opt.save_root = pjoin(opt.checkpoints_dir, opt.dataset_name, opt.name)
|
64 |
+
opt.model_dir = pjoin(opt.save_root, 'model')
|
65 |
+
opt.meta_dir = pjoin(opt.save_root, 'meta')
|
66 |
+
|
67 |
+
if opt.dataset_name == 't2m':
|
68 |
+
opt.data_root = './data/HumanML3D'
|
69 |
+
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
|
70 |
+
opt.text_dir = pjoin(opt.data_root, 'texts')
|
71 |
+
opt.joints_num = 22
|
72 |
+
opt.dim_pose = 263
|
73 |
+
opt.max_motion_length = 196
|
74 |
+
elif opt.dataset_name == 'kit':
|
75 |
+
opt.data_root = './data/KIT-ML'
|
76 |
+
opt.motion_dir = pjoin(opt.data_root, 'new_joint_vecs')
|
77 |
+
opt.text_dir = pjoin(opt.data_root, 'texts')
|
78 |
+
opt.joints_num = 21
|
79 |
+
opt.dim_pose = 251
|
80 |
+
opt.max_motion_length = 196
|
81 |
+
else:
|
82 |
+
raise KeyError('Dataset not recognized')
|
83 |
+
|
84 |
+
opt.dim_word = 300
|
85 |
+
opt.num_classes = 200 // opt.unit_length
|
86 |
+
opt.dim_pos_ohot = len(POS_enumerator)
|
87 |
+
opt.is_train = False
|
88 |
+
opt.is_continue = False
|
89 |
+
opt.device = device
|
90 |
+
|
91 |
+
return opt
|
utils/metrics.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy import linalg
|
3 |
+
|
4 |
+
|
5 |
+
# (X - X_train)*(X - X_train) = -2X*X_train + X*X + X_train*X_train
|
6 |
+
def euclidean_distance_matrix(matrix1, matrix2):
|
7 |
+
"""
|
8 |
+
Params:
|
9 |
+
-- matrix1: N1 x D
|
10 |
+
-- matrix2: N2 x D
|
11 |
+
Returns:
|
12 |
+
-- dist: N1 x N2
|
13 |
+
dist[i, j] == distance(matrix1[i], matrix2[j])
|
14 |
+
"""
|
15 |
+
assert matrix1.shape[1] == matrix2.shape[1]
|
16 |
+
d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train)
|
17 |
+
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1)
|
18 |
+
d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, )
|
19 |
+
dists = np.sqrt(d1 + d2 + d3) # broadcasting
|
20 |
+
return dists
|
21 |
+
|
22 |
+
def calculate_top_k(mat, top_k):
|
23 |
+
size = mat.shape[0]
|
24 |
+
gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1)
|
25 |
+
bool_mat = (mat == gt_mat)
|
26 |
+
correct_vec = False
|
27 |
+
top_k_list = []
|
28 |
+
for i in range(top_k):
|
29 |
+
# print(correct_vec, bool_mat[:, i])
|
30 |
+
correct_vec = (correct_vec | bool_mat[:, i])
|
31 |
+
# print(correct_vec)
|
32 |
+
top_k_list.append(correct_vec[:, None])
|
33 |
+
top_k_mat = np.concatenate(top_k_list, axis=1)
|
34 |
+
return top_k_mat
|
35 |
+
|
36 |
+
|
37 |
+
def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False):
|
38 |
+
dist_mat = euclidean_distance_matrix(embedding1, embedding2)
|
39 |
+
argmax = np.argsort(dist_mat, axis=1)
|
40 |
+
top_k_mat = calculate_top_k(argmax, top_k)
|
41 |
+
if sum_all:
|
42 |
+
return top_k_mat.sum(axis=0)
|
43 |
+
else:
|
44 |
+
return top_k_mat
|
45 |
+
|
46 |
+
|
47 |
+
def calculate_matching_score(embedding1, embedding2, sum_all=False):
|
48 |
+
assert len(embedding1.shape) == 2
|
49 |
+
assert embedding1.shape[0] == embedding2.shape[0]
|
50 |
+
assert embedding1.shape[1] == embedding2.shape[1]
|
51 |
+
|
52 |
+
dist = linalg.norm(embedding1 - embedding2, axis=1)
|
53 |
+
if sum_all:
|
54 |
+
return dist.sum(axis=0)
|
55 |
+
else:
|
56 |
+
return dist
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
def calculate_activation_statistics(activations):
|
61 |
+
"""
|
62 |
+
Params:
|
63 |
+
-- activation: num_samples x dim_feat
|
64 |
+
Returns:
|
65 |
+
-- mu: dim_feat
|
66 |
+
-- sigma: dim_feat x dim_feat
|
67 |
+
"""
|
68 |
+
mu = np.mean(activations, axis=0)
|
69 |
+
cov = np.cov(activations, rowvar=False)
|
70 |
+
return mu, cov
|
71 |
+
|
72 |
+
|
73 |
+
def calculate_diversity(activation, diversity_times):
|
74 |
+
assert len(activation.shape) == 2
|
75 |
+
assert activation.shape[0] > diversity_times
|
76 |
+
num_samples = activation.shape[0]
|
77 |
+
|
78 |
+
first_indices = np.random.choice(num_samples, diversity_times, replace=False)
|
79 |
+
second_indices = np.random.choice(num_samples, diversity_times, replace=False)
|
80 |
+
dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1)
|
81 |
+
return dist.mean()
|
82 |
+
|
83 |
+
|
84 |
+
def calculate_multimodality(activation, multimodality_times):
|
85 |
+
assert len(activation.shape) == 3
|
86 |
+
assert activation.shape[1] > multimodality_times
|
87 |
+
num_per_sent = activation.shape[1]
|
88 |
+
|
89 |
+
first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
|
90 |
+
second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False)
|
91 |
+
dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2)
|
92 |
+
return dist.mean()
|
93 |
+
|
94 |
+
|
95 |
+
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
|
96 |
+
"""Numpy implementation of the Frechet Distance.
|
97 |
+
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
|
98 |
+
and X_2 ~ N(mu_2, C_2) is
|
99 |
+
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
|
100 |
+
Stable version by Dougal J. Sutherland.
|
101 |
+
Params:
|
102 |
+
-- mu1 : Numpy array containing the activations of a layer of the
|
103 |
+
inception net (like returned by the function 'get_predictions')
|
104 |
+
for generated samples.
|
105 |
+
-- mu2 : The sample mean over activations, precalculated on an
|
106 |
+
representative data set.
|
107 |
+
-- sigma1: The covariance matrix over activations for generated samples.
|
108 |
+
-- sigma2: The covariance matrix over activations, precalculated on an
|
109 |
+
representative data set.
|
110 |
+
Returns:
|
111 |
+
-- : The Frechet Distance.
|
112 |
+
"""
|
113 |
+
|
114 |
+
mu1 = np.atleast_1d(mu1)
|
115 |
+
mu2 = np.atleast_1d(mu2)
|
116 |
+
|
117 |
+
sigma1 = np.atleast_2d(sigma1)
|
118 |
+
sigma2 = np.atleast_2d(sigma2)
|
119 |
+
|
120 |
+
assert mu1.shape == mu2.shape, \
|
121 |
+
'Training and test mean vectors have different lengths'
|
122 |
+
assert sigma1.shape == sigma2.shape, \
|
123 |
+
'Training and test covariances have different dimensions'
|
124 |
+
|
125 |
+
diff = mu1 - mu2
|
126 |
+
|
127 |
+
# Product might be almost singular
|
128 |
+
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
129 |
+
if not np.isfinite(covmean).all():
|
130 |
+
msg = ('fid calculation produces singular product; '
|
131 |
+
'adding %s to diagonal of cov estimates') % eps
|
132 |
+
print(msg)
|
133 |
+
offset = np.eye(sigma1.shape[0]) * eps
|
134 |
+
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
135 |
+
|
136 |
+
# Numerical error might give slight imaginary component
|
137 |
+
if np.iscomplexobj(covmean):
|
138 |
+
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
139 |
+
m = np.max(np.abs(covmean.imag))
|
140 |
+
raise ValueError('Imaginary component {}'.format(m))
|
141 |
+
covmean = covmean.real
|
142 |
+
|
143 |
+
tr_covmean = np.trace(covmean)
|
144 |
+
|
145 |
+
return (diff.dot(diff) + np.trace(sigma1) +
|
146 |
+
np.trace(sigma2) - 2 * tr_covmean)
|
utils/motion_process.py
ADDED
@@ -0,0 +1,515 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os.path import join as pjoin
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
from utils.quaternion import *
|
6 |
+
from utils.skeleton import Skeleton
|
7 |
+
from utils.paramUtil import *
|
8 |
+
|
9 |
+
import torch
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
# positions (batch, joint_num, 3)
|
13 |
+
def uniform_skeleton(positions, target_offset):
|
14 |
+
src_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
|
15 |
+
src_offset = src_skel.get_offsets_joints(torch.from_numpy(positions[0]))
|
16 |
+
src_offset = src_offset.numpy()
|
17 |
+
tgt_offset = target_offset.numpy()
|
18 |
+
# print(src_offset)
|
19 |
+
# print(tgt_offset)
|
20 |
+
'''Calculate Scale Ratio as the ratio of legs'''
|
21 |
+
src_leg_len = np.abs(src_offset[l_idx1]).max() + np.abs(src_offset[l_idx2]).max()
|
22 |
+
tgt_leg_len = np.abs(tgt_offset[l_idx1]).max() + np.abs(tgt_offset[l_idx2]).max()
|
23 |
+
|
24 |
+
scale_rt = tgt_leg_len / src_leg_len
|
25 |
+
# print(scale_rt)
|
26 |
+
src_root_pos = positions[:, 0]
|
27 |
+
tgt_root_pos = src_root_pos * scale_rt
|
28 |
+
|
29 |
+
'''Inverse Kinematics'''
|
30 |
+
quat_params = src_skel.inverse_kinematics_np(positions, face_joint_indx)
|
31 |
+
# print(quat_params.shape)
|
32 |
+
|
33 |
+
'''Forward Kinematics'''
|
34 |
+
src_skel.set_offset(target_offset)
|
35 |
+
new_joints = src_skel.forward_kinematics_np(quat_params, tgt_root_pos)
|
36 |
+
return new_joints
|
37 |
+
|
38 |
+
|
39 |
+
def extract_features(positions, feet_thre, n_raw_offsets, kinematic_chain, face_joint_indx, fid_r, fid_l):
|
40 |
+
global_positions = positions.copy()
|
41 |
+
""" Get Foot Contacts """
|
42 |
+
|
43 |
+
def foot_detect(positions, thres):
|
44 |
+
velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])
|
45 |
+
|
46 |
+
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
|
47 |
+
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
|
48 |
+
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
|
49 |
+
# feet_l_h = positions[:-1,fid_l,1]
|
50 |
+
# feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float)
|
51 |
+
feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float)
|
52 |
+
|
53 |
+
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
|
54 |
+
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
|
55 |
+
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
|
56 |
+
# feet_r_h = positions[:-1,fid_r,1]
|
57 |
+
# feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float)
|
58 |
+
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float)
|
59 |
+
return feet_l, feet_r
|
60 |
+
|
61 |
+
#
|
62 |
+
feet_l, feet_r = foot_detect(positions, feet_thre)
|
63 |
+
# feet_l, feet_r = foot_detect(positions, 0.002)
|
64 |
+
|
65 |
+
'''Quaternion and Cartesian representation'''
|
66 |
+
r_rot = None
|
67 |
+
|
68 |
+
def get_rifke(positions):
|
69 |
+
'''Local pose'''
|
70 |
+
positions[..., 0] -= positions[:, 0:1, 0]
|
71 |
+
positions[..., 2] -= positions[:, 0:1, 2]
|
72 |
+
'''All pose face Z+'''
|
73 |
+
positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
|
74 |
+
return positions
|
75 |
+
|
76 |
+
def get_quaternion(positions):
|
77 |
+
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
|
78 |
+
# (seq_len, joints_num, 4)
|
79 |
+
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)
|
80 |
+
|
81 |
+
'''Fix Quaternion Discontinuity'''
|
82 |
+
quat_params = qfix(quat_params)
|
83 |
+
# (seq_len, 4)
|
84 |
+
r_rot = quat_params[:, 0].copy()
|
85 |
+
# print(r_rot[0])
|
86 |
+
'''Root Linear Velocity'''
|
87 |
+
# (seq_len - 1, 3)
|
88 |
+
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
|
89 |
+
# print(r_rot.shape, velocity.shape)
|
90 |
+
velocity = qrot_np(r_rot[1:], velocity)
|
91 |
+
'''Root Angular Velocity'''
|
92 |
+
# (seq_len - 1, 4)
|
93 |
+
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
|
94 |
+
quat_params[1:, 0] = r_velocity
|
95 |
+
# (seq_len, joints_num, 4)
|
96 |
+
return quat_params, r_velocity, velocity, r_rot
|
97 |
+
|
98 |
+
def get_cont6d_params(positions):
|
99 |
+
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
|
100 |
+
# (seq_len, joints_num, 4)
|
101 |
+
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)
|
102 |
+
|
103 |
+
'''Quaternion to continuous 6D'''
|
104 |
+
cont_6d_params = quaternion_to_cont6d_np(quat_params)
|
105 |
+
# (seq_len, 4)
|
106 |
+
r_rot = quat_params[:, 0].copy()
|
107 |
+
# print(r_rot[0])
|
108 |
+
'''Root Linear Velocity'''
|
109 |
+
# (seq_len - 1, 3)
|
110 |
+
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
|
111 |
+
# print(r_rot.shape, velocity.shape)
|
112 |
+
velocity = qrot_np(r_rot[1:], velocity)
|
113 |
+
'''Root Angular Velocity'''
|
114 |
+
# (seq_len - 1, 4)
|
115 |
+
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
|
116 |
+
# (seq_len, joints_num, 4)
|
117 |
+
return cont_6d_params, r_velocity, velocity, r_rot
|
118 |
+
|
119 |
+
cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
|
120 |
+
positions = get_rifke(positions)
|
121 |
+
|
122 |
+
# trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0)
|
123 |
+
# r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]])
|
124 |
+
|
125 |
+
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
|
126 |
+
# plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r')
|
127 |
+
# plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g')
|
128 |
+
# plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y')
|
129 |
+
# plt.xlabel('x')
|
130 |
+
# plt.ylabel('z')
|
131 |
+
# plt.axis('equal')
|
132 |
+
# plt.show()
|
133 |
+
|
134 |
+
'''Root height'''
|
135 |
+
root_y = positions[:, 0, 1:2]
|
136 |
+
|
137 |
+
'''Root rotation and linear velocity'''
|
138 |
+
# (seq_len-1, 1) rotation velocity along y-axis
|
139 |
+
# (seq_len-1, 2) linear velovity on xz plane
|
140 |
+
r_velocity = np.arcsin(r_velocity[:, 2:3])
|
141 |
+
l_velocity = velocity[:, [0, 2]]
|
142 |
+
# print(r_velocity.shape, l_velocity.shape, root_y.shape)
|
143 |
+
root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)
|
144 |
+
|
145 |
+
'''Get Joint Rotation Representation'''
|
146 |
+
# (seq_len, (joints_num-1) *6) quaternion for skeleton joints
|
147 |
+
rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)
|
148 |
+
|
149 |
+
'''Get Joint Rotation Invariant Position Represention'''
|
150 |
+
# (seq_len, (joints_num-1)*3) local joint position
|
151 |
+
ric_data = positions[:, 1:].reshape(len(positions), -1)
|
152 |
+
|
153 |
+
'''Get Joint Velocity Representation'''
|
154 |
+
# (seq_len-1, joints_num*3)
|
155 |
+
local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
|
156 |
+
global_positions[1:] - global_positions[:-1])
|
157 |
+
local_vel = local_vel.reshape(len(local_vel), -1)
|
158 |
+
|
159 |
+
data = root_data
|
160 |
+
data = np.concatenate([data, ric_data[:-1]], axis=-1)
|
161 |
+
data = np.concatenate([data, rot_data[:-1]], axis=-1)
|
162 |
+
# print(data.shape, local_vel.shape)
|
163 |
+
data = np.concatenate([data, local_vel], axis=-1)
|
164 |
+
data = np.concatenate([data, feet_l, feet_r], axis=-1)
|
165 |
+
|
166 |
+
return data
|
167 |
+
|
168 |
+
|
169 |
+
def process_file(positions, feet_thre):
|
170 |
+
# (seq_len, joints_num, 3)
|
171 |
+
# '''Down Sample'''
|
172 |
+
# positions = positions[::ds_num]
|
173 |
+
|
174 |
+
'''Uniform Skeleton'''
|
175 |
+
positions = uniform_skeleton(positions, tgt_offsets)
|
176 |
+
|
177 |
+
'''Put on Floor'''
|
178 |
+
floor_height = positions.min(axis=0).min(axis=0)[1]
|
179 |
+
positions[:, :, 1] -= floor_height
|
180 |
+
# print(floor_height)
|
181 |
+
|
182 |
+
# plot_3d_motion("./positions_1.mp4", kinematic_chain, positions, 'title', fps=20)
|
183 |
+
|
184 |
+
'''XZ at origin'''
|
185 |
+
root_pos_init = positions[0]
|
186 |
+
root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1])
|
187 |
+
positions = positions - root_pose_init_xz
|
188 |
+
|
189 |
+
# '''Move the first pose to origin '''
|
190 |
+
# root_pos_init = positions[0]
|
191 |
+
# positions = positions - root_pos_init[0]
|
192 |
+
|
193 |
+
'''All initially face Z+'''
|
194 |
+
r_hip, l_hip, sdr_r, sdr_l = face_joint_indx
|
195 |
+
across1 = root_pos_init[r_hip] - root_pos_init[l_hip]
|
196 |
+
across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l]
|
197 |
+
across = across1 + across2
|
198 |
+
across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis]
|
199 |
+
|
200 |
+
# forward (3,), rotate around y-axis
|
201 |
+
forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
|
202 |
+
# forward (3,)
|
203 |
+
forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis]
|
204 |
+
|
205 |
+
# print(forward_init)
|
206 |
+
|
207 |
+
target = np.array([[0, 0, 1]])
|
208 |
+
root_quat_init = qbetween_np(forward_init, target)
|
209 |
+
root_quat_init = np.ones(positions.shape[:-1] + (4,)) * root_quat_init
|
210 |
+
|
211 |
+
positions_b = positions.copy()
|
212 |
+
|
213 |
+
positions = qrot_np(root_quat_init, positions)
|
214 |
+
|
215 |
+
# plot_3d_motion("./positions_2.mp4", kinematic_chain, positions, 'title', fps=20)
|
216 |
+
|
217 |
+
'''New ground truth positions'''
|
218 |
+
global_positions = positions.copy()
|
219 |
+
|
220 |
+
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
|
221 |
+
# plt.plot(positions[:, 0, 0], positions[:, 0, 2], marker='o', color='r')
|
222 |
+
# plt.xlabel('x')
|
223 |
+
# plt.ylabel('z')
|
224 |
+
# plt.axis('equal')
|
225 |
+
# plt.show()
|
226 |
+
|
227 |
+
""" Get Foot Contacts """
|
228 |
+
|
229 |
+
def foot_detect(positions, thres):
|
230 |
+
velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0])
|
231 |
+
|
232 |
+
feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2
|
233 |
+
feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2
|
234 |
+
feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2
|
235 |
+
# feet_l_h = positions[:-1,fid_l,1]
|
236 |
+
# feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float)
|
237 |
+
feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float)
|
238 |
+
|
239 |
+
feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2
|
240 |
+
feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2
|
241 |
+
feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2
|
242 |
+
# feet_r_h = positions[:-1,fid_r,1]
|
243 |
+
# feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float)
|
244 |
+
feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float)
|
245 |
+
return feet_l, feet_r
|
246 |
+
#
|
247 |
+
feet_l, feet_r = foot_detect(positions, feet_thre)
|
248 |
+
# feet_l, feet_r = foot_detect(positions, 0.002)
|
249 |
+
|
250 |
+
'''Quaternion and Cartesian representation'''
|
251 |
+
r_rot = None
|
252 |
+
|
253 |
+
def get_rifke(positions):
|
254 |
+
'''Local pose'''
|
255 |
+
positions[..., 0] -= positions[:, 0:1, 0]
|
256 |
+
positions[..., 2] -= positions[:, 0:1, 2]
|
257 |
+
'''All pose face Z+'''
|
258 |
+
positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions)
|
259 |
+
return positions
|
260 |
+
|
261 |
+
def get_quaternion(positions):
|
262 |
+
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
|
263 |
+
# (seq_len, joints_num, 4)
|
264 |
+
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False)
|
265 |
+
|
266 |
+
'''Fix Quaternion Discontinuity'''
|
267 |
+
quat_params = qfix(quat_params)
|
268 |
+
# (seq_len, 4)
|
269 |
+
r_rot = quat_params[:, 0].copy()
|
270 |
+
# print(r_rot[0])
|
271 |
+
'''Root Linear Velocity'''
|
272 |
+
# (seq_len - 1, 3)
|
273 |
+
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
|
274 |
+
# print(r_rot.shape, velocity.shape)
|
275 |
+
velocity = qrot_np(r_rot[1:], velocity)
|
276 |
+
'''Root Angular Velocity'''
|
277 |
+
# (seq_len - 1, 4)
|
278 |
+
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
|
279 |
+
quat_params[1:, 0] = r_velocity
|
280 |
+
# (seq_len, joints_num, 4)
|
281 |
+
return quat_params, r_velocity, velocity, r_rot
|
282 |
+
|
283 |
+
def get_cont6d_params(positions):
|
284 |
+
skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu")
|
285 |
+
# (seq_len, joints_num, 4)
|
286 |
+
quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True)
|
287 |
+
|
288 |
+
'''Quaternion to continuous 6D'''
|
289 |
+
cont_6d_params = quaternion_to_cont6d_np(quat_params)
|
290 |
+
# (seq_len, 4)
|
291 |
+
r_rot = quat_params[:, 0].copy()
|
292 |
+
# print(r_rot[0])
|
293 |
+
'''Root Linear Velocity'''
|
294 |
+
# (seq_len - 1, 3)
|
295 |
+
velocity = (positions[1:, 0] - positions[:-1, 0]).copy()
|
296 |
+
# print(r_rot.shape, velocity.shape)
|
297 |
+
velocity = qrot_np(r_rot[1:], velocity)
|
298 |
+
'''Root Angular Velocity'''
|
299 |
+
# (seq_len - 1, 4)
|
300 |
+
r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1]))
|
301 |
+
# (seq_len, joints_num, 4)
|
302 |
+
return cont_6d_params, r_velocity, velocity, r_rot
|
303 |
+
|
304 |
+
cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions)
|
305 |
+
positions = get_rifke(positions)
|
306 |
+
|
307 |
+
# trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0)
|
308 |
+
# r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]])
|
309 |
+
|
310 |
+
# plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*')
|
311 |
+
# plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r')
|
312 |
+
# plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g')
|
313 |
+
# plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y')
|
314 |
+
# plt.xlabel('x')
|
315 |
+
# plt.ylabel('z')
|
316 |
+
# plt.axis('equal')
|
317 |
+
# plt.show()
|
318 |
+
|
319 |
+
'''Root height'''
|
320 |
+
root_y = positions[:, 0, 1:2]
|
321 |
+
|
322 |
+
'''Root rotation and linear velocity'''
|
323 |
+
# (seq_len-1, 1) rotation velocity along y-axis
|
324 |
+
# (seq_len-1, 2) linear velovity on xz plane
|
325 |
+
r_velocity = np.arcsin(r_velocity[:, 2:3])
|
326 |
+
l_velocity = velocity[:, [0, 2]]
|
327 |
+
# print(r_velocity.shape, l_velocity.shape, root_y.shape)
|
328 |
+
root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1)
|
329 |
+
|
330 |
+
'''Get Joint Rotation Representation'''
|
331 |
+
# (seq_len, (joints_num-1) *6) quaternion for skeleton joints
|
332 |
+
rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1)
|
333 |
+
|
334 |
+
'''Get Joint Rotation Invariant Position Represention'''
|
335 |
+
# (seq_len, (joints_num-1)*3) local joint position
|
336 |
+
ric_data = positions[:, 1:].reshape(len(positions), -1)
|
337 |
+
|
338 |
+
'''Get Joint Velocity Representation'''
|
339 |
+
# (seq_len-1, joints_num*3)
|
340 |
+
local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1),
|
341 |
+
global_positions[1:] - global_positions[:-1])
|
342 |
+
local_vel = local_vel.reshape(len(local_vel), -1)
|
343 |
+
|
344 |
+
data = root_data
|
345 |
+
data = np.concatenate([data, ric_data[:-1]], axis=-1)
|
346 |
+
data = np.concatenate([data, rot_data[:-1]], axis=-1)
|
347 |
+
# print(data.shape, local_vel.shape)
|
348 |
+
data = np.concatenate([data, local_vel], axis=-1)
|
349 |
+
data = np.concatenate([data, feet_l, feet_r], axis=-1)
|
350 |
+
|
351 |
+
return data, global_positions, positions, l_velocity
|
352 |
+
|
353 |
+
|
354 |
+
# Recover global angle and positions for rotation data
|
355 |
+
# root_rot_velocity (B, seq_len, 1)
|
356 |
+
# root_linear_velocity (B, seq_len, 2)
|
357 |
+
# root_y (B, seq_len, 1)
|
358 |
+
# ric_data (B, seq_len, (joint_num - 1)*3)
|
359 |
+
# rot_data (B, seq_len, (joint_num - 1)*6)
|
360 |
+
# local_velocity (B, seq_len, joint_num*3)
|
361 |
+
# foot contact (B, seq_len, 4)
|
362 |
+
def recover_root_rot_pos(data):
|
363 |
+
rot_vel = data[..., 0]
|
364 |
+
r_rot_ang = torch.zeros_like(rot_vel).to(data.device)
|
365 |
+
'''Get Y-axis rotation from rotation velocity'''
|
366 |
+
r_rot_ang[..., 1:] = rot_vel[..., :-1]
|
367 |
+
r_rot_ang = torch.cumsum(r_rot_ang, dim=-1)
|
368 |
+
|
369 |
+
r_rot_quat = torch.zeros(data.shape[:-1] + (4,)).to(data.device)
|
370 |
+
r_rot_quat[..., 0] = torch.cos(r_rot_ang)
|
371 |
+
r_rot_quat[..., 2] = torch.sin(r_rot_ang)
|
372 |
+
|
373 |
+
r_pos = torch.zeros(data.shape[:-1] + (3,)).to(data.device)
|
374 |
+
r_pos[..., 1:, [0, 2]] = data[..., :-1, 1:3]
|
375 |
+
'''Add Y-axis rotation to root position'''
|
376 |
+
r_pos = qrot(qinv(r_rot_quat), r_pos)
|
377 |
+
|
378 |
+
r_pos = torch.cumsum(r_pos, dim=-2)
|
379 |
+
|
380 |
+
r_pos[..., 1] = data[..., 3]
|
381 |
+
return r_rot_quat, r_pos
|
382 |
+
|
383 |
+
|
384 |
+
def recover_from_rot(data, joints_num, skeleton):
|
385 |
+
r_rot_quat, r_pos = recover_root_rot_pos(data)
|
386 |
+
|
387 |
+
r_rot_cont6d = quaternion_to_cont6d(r_rot_quat)
|
388 |
+
|
389 |
+
start_indx = 1 + 2 + 1 + (joints_num - 1) * 3
|
390 |
+
end_indx = start_indx + (joints_num - 1) * 6
|
391 |
+
cont6d_params = data[..., start_indx:end_indx]
|
392 |
+
# print(r_rot_cont6d.shape, cont6d_params.shape, r_pos.shape)
|
393 |
+
cont6d_params = torch.cat([r_rot_cont6d, cont6d_params], dim=-1)
|
394 |
+
cont6d_params = cont6d_params.view(-1, joints_num, 6)
|
395 |
+
|
396 |
+
positions = skeleton.forward_kinematics_cont6d(cont6d_params, r_pos)
|
397 |
+
|
398 |
+
return positions
|
399 |
+
|
400 |
+
|
401 |
+
def recover_from_ric(data, joints_num):
|
402 |
+
r_rot_quat, r_pos = recover_root_rot_pos(data)
|
403 |
+
positions = data[..., 4:(joints_num - 1) * 3 + 4]
|
404 |
+
positions = positions.view(positions.shape[:-1] + (-1, 3))
|
405 |
+
|
406 |
+
'''Add Y-axis rotation to local joints'''
|
407 |
+
positions = qrot(qinv(r_rot_quat[..., None, :]).expand(positions.shape[:-1] + (4,)), positions)
|
408 |
+
|
409 |
+
'''Add root XZ to joints'''
|
410 |
+
positions[..., 0] += r_pos[..., 0:1]
|
411 |
+
positions[..., 2] += r_pos[..., 2:3]
|
412 |
+
|
413 |
+
'''Concate root and joints'''
|
414 |
+
positions = torch.cat([r_pos.unsqueeze(-2), positions], dim=-2)
|
415 |
+
|
416 |
+
return positions
|
417 |
+
'''
|
418 |
+
For Text2Motion Dataset
|
419 |
+
'''
|
420 |
+
'''
|
421 |
+
if __name__ == "__main__":
|
422 |
+
example_id = "000021"
|
423 |
+
# Lower legs
|
424 |
+
l_idx1, l_idx2 = 5, 8
|
425 |
+
# Right/Left foot
|
426 |
+
fid_r, fid_l = [8, 11], [7, 10]
|
427 |
+
# Face direction, r_hip, l_hip, sdr_r, sdr_l
|
428 |
+
face_joint_indx = [2, 1, 17, 16]
|
429 |
+
# l_hip, r_hip
|
430 |
+
r_hip, l_hip = 2, 1
|
431 |
+
joints_num = 22
|
432 |
+
# ds_num = 8
|
433 |
+
data_dir = '../dataset/pose_data_raw/joints/'
|
434 |
+
save_dir1 = '../dataset/pose_data_raw/new_joints/'
|
435 |
+
save_dir2 = '../dataset/pose_data_raw/new_joint_vecs/'
|
436 |
+
|
437 |
+
n_raw_offsets = torch.from_numpy(t2m_raw_offsets)
|
438 |
+
kinematic_chain = t2m_kinematic_chain
|
439 |
+
|
440 |
+
# Get offsets of target skeleton
|
441 |
+
example_data = np.load(os.path.join(data_dir, example_id + '.npy'))
|
442 |
+
example_data = example_data.reshape(len(example_data), -1, 3)
|
443 |
+
example_data = torch.from_numpy(example_data)
|
444 |
+
tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
|
445 |
+
# (joints_num, 3)
|
446 |
+
tgt_offsets = tgt_skel.get_offsets_joints(example_data[0])
|
447 |
+
# print(tgt_offsets)
|
448 |
+
|
449 |
+
source_list = os.listdir(data_dir)
|
450 |
+
frame_num = 0
|
451 |
+
for source_file in tqdm(source_list):
|
452 |
+
source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num]
|
453 |
+
try:
|
454 |
+
data, ground_positions, positions, l_velocity = process_file(source_data, 0.002)
|
455 |
+
rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num)
|
456 |
+
np.save(pjoin(save_dir1, source_file), rec_ric_data.squeeze().numpy())
|
457 |
+
np.save(pjoin(save_dir2, source_file), data)
|
458 |
+
frame_num += data.shape[0]
|
459 |
+
except Exception as e:
|
460 |
+
print(source_file)
|
461 |
+
print(e)
|
462 |
+
|
463 |
+
print('Total clips: %d, Frames: %d, Duration: %fm' %
|
464 |
+
(len(source_list), frame_num, frame_num / 20 / 60))
|
465 |
+
'''
|
466 |
+
|
467 |
+
if __name__ == "__main__":
|
468 |
+
example_id = "03950_gt"
|
469 |
+
# Lower legs
|
470 |
+
l_idx1, l_idx2 = 17, 18
|
471 |
+
# Right/Left foot
|
472 |
+
fid_r, fid_l = [14, 15], [19, 20]
|
473 |
+
# Face direction, r_hip, l_hip, sdr_r, sdr_l
|
474 |
+
face_joint_indx = [11, 16, 5, 8]
|
475 |
+
# l_hip, r_hip
|
476 |
+
r_hip, l_hip = 11, 16
|
477 |
+
joints_num = 21
|
478 |
+
# ds_num = 8
|
479 |
+
data_dir = '../dataset/kit_mocap_dataset/joints/'
|
480 |
+
save_dir1 = '../dataset/kit_mocap_dataset/new_joints/'
|
481 |
+
save_dir2 = '../dataset/kit_mocap_dataset/new_joint_vecs/'
|
482 |
+
|
483 |
+
n_raw_offsets = torch.from_numpy(kit_raw_offsets)
|
484 |
+
kinematic_chain = kit_kinematic_chain
|
485 |
+
|
486 |
+
'''Get offsets of target skeleton'''
|
487 |
+
example_data = np.load(os.path.join(data_dir, example_id + '.npy'))
|
488 |
+
example_data = example_data.reshape(len(example_data), -1, 3)
|
489 |
+
example_data = torch.from_numpy(example_data)
|
490 |
+
tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu')
|
491 |
+
# (joints_num, 3)
|
492 |
+
tgt_offsets = tgt_skel.get_offsets_joints(example_data[0])
|
493 |
+
# print(tgt_offsets)
|
494 |
+
|
495 |
+
source_list = os.listdir(data_dir)
|
496 |
+
frame_num = 0
|
497 |
+
'''Read source data'''
|
498 |
+
for source_file in tqdm(source_list):
|
499 |
+
source_data = np.load(os.path.join(data_dir, source_file))[:, :joints_num]
|
500 |
+
try:
|
501 |
+
name = ''.join(source_file[:-7].split('_')) + '.npy'
|
502 |
+
data, ground_positions, positions, l_velocity = process_file(source_data, 0.05)
|
503 |
+
rec_ric_data = recover_from_ric(torch.from_numpy(data).unsqueeze(0).float(), joints_num)
|
504 |
+
if np.isnan(rec_ric_data.numpy()).any():
|
505 |
+
print(source_file)
|
506 |
+
continue
|
507 |
+
np.save(pjoin(save_dir1, name), rec_ric_data.squeeze().numpy())
|
508 |
+
np.save(pjoin(save_dir2, name), data)
|
509 |
+
frame_num += data.shape[0]
|
510 |
+
except Exception as e:
|
511 |
+
print(source_file)
|
512 |
+
print(e)
|
513 |
+
|
514 |
+
print('Total clips: %d, Frames: %d, Duration: %fm' %
|
515 |
+
(len(source_list), frame_num, frame_num / 12.5 / 60))
|
utils/paramUtil.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
# Define a kinematic tree for the skeletal struture
|
4 |
+
kit_kinematic_chain = [[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], [3, 5, 6, 7], [3, 8, 9, 10]]
|
5 |
+
|
6 |
+
kit_raw_offsets = np.array(
|
7 |
+
[
|
8 |
+
[0, 0, 0],
|
9 |
+
[0, 1, 0],
|
10 |
+
[0, 1, 0],
|
11 |
+
[0, 1, 0],
|
12 |
+
[0, 1, 0],
|
13 |
+
[1, 0, 0],
|
14 |
+
[0, -1, 0],
|
15 |
+
[0, -1, 0],
|
16 |
+
[-1, 0, 0],
|
17 |
+
[0, -1, 0],
|
18 |
+
[0, -1, 0],
|
19 |
+
[1, 0, 0],
|
20 |
+
[0, -1, 0],
|
21 |
+
[0, -1, 0],
|
22 |
+
[0, 0, 1],
|
23 |
+
[0, 0, 1],
|
24 |
+
[-1, 0, 0],
|
25 |
+
[0, -1, 0],
|
26 |
+
[0, -1, 0],
|
27 |
+
[0, 0, 1],
|
28 |
+
[0, 0, 1]
|
29 |
+
]
|
30 |
+
)
|
31 |
+
|
32 |
+
t2m_raw_offsets = np.array([[0,0,0],
|
33 |
+
[1,0,0],
|
34 |
+
[-1,0,0],
|
35 |
+
[0,1,0],
|
36 |
+
[0,-1,0],
|
37 |
+
[0,-1,0],
|
38 |
+
[0,1,0],
|
39 |
+
[0,-1,0],
|
40 |
+
[0,-1,0],
|
41 |
+
[0,1,0],
|
42 |
+
[0,0,1],
|
43 |
+
[0,0,1],
|
44 |
+
[0,1,0],
|
45 |
+
[1,0,0],
|
46 |
+
[-1,0,0],
|
47 |
+
[0,0,1],
|
48 |
+
[0,-1,0],
|
49 |
+
[0,-1,0],
|
50 |
+
[0,-1,0],
|
51 |
+
[0,-1,0],
|
52 |
+
[0,-1,0],
|
53 |
+
[0,-1,0]])
|
54 |
+
|
55 |
+
t2m_kinematic_chain = [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], [0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], [9, 13, 16, 18, 20]]
|
56 |
+
t2m_left_hand_chain = [[20, 22, 23, 24], [20, 34, 35, 36], [20, 25, 26, 27], [20, 31, 32, 33], [20, 28, 29, 30]]
|
57 |
+
t2m_right_hand_chain = [[21, 43, 44, 45], [21, 46, 47, 48], [21, 40, 41, 42], [21, 37, 38, 39], [21, 49, 50, 51]]
|
58 |
+
|
59 |
+
|
60 |
+
kit_tgt_skel_id = '03950'
|
61 |
+
|
62 |
+
t2m_tgt_skel_id = '000021'
|
63 |
+
|
utils/plot_script.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from mpl_toolkits.mplot3d import Axes3D
|
6 |
+
from matplotlib.animation import FuncAnimation, FFMpegFileWriter
|
7 |
+
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
8 |
+
import mpl_toolkits.mplot3d.axes3d as p3
|
9 |
+
# import cv2
|
10 |
+
|
11 |
+
|
12 |
+
def list_cut_average(ll, intervals):
|
13 |
+
if intervals == 1:
|
14 |
+
return ll
|
15 |
+
|
16 |
+
bins = math.ceil(len(ll) * 1.0 / intervals)
|
17 |
+
ll_new = []
|
18 |
+
for i in range(bins):
|
19 |
+
l_low = intervals * i
|
20 |
+
l_high = l_low + intervals
|
21 |
+
l_high = l_high if l_high < len(ll) else len(ll)
|
22 |
+
ll_new.append(np.mean(ll[l_low:l_high]))
|
23 |
+
return ll_new
|
24 |
+
|
25 |
+
|
26 |
+
def plot_3d_motion(save_path, kinematic_tree, joints, title, figsize=(10, 10), fps=120, radius=4):
|
27 |
+
matplotlib.use('Agg')
|
28 |
+
|
29 |
+
title_sp = title.split(' ')
|
30 |
+
if len(title_sp) > 20:
|
31 |
+
title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:20]), ' '.join(title_sp[20:])])
|
32 |
+
elif len(title_sp) > 10:
|
33 |
+
title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:])])
|
34 |
+
|
35 |
+
def init():
|
36 |
+
ax.set_xlim3d([-radius / 4, radius / 4])
|
37 |
+
ax.set_ylim3d([0, radius / 2])
|
38 |
+
ax.set_zlim3d([0, radius / 2])
|
39 |
+
# print(title)
|
40 |
+
fig.suptitle(title, fontsize=20)
|
41 |
+
ax.grid(b=False)
|
42 |
+
|
43 |
+
def plot_xzPlane(minx, maxx, miny, minz, maxz):
|
44 |
+
## Plot a plane XZ
|
45 |
+
verts = [
|
46 |
+
[minx, miny, minz],
|
47 |
+
[minx, miny, maxz],
|
48 |
+
[maxx, miny, maxz],
|
49 |
+
[maxx, miny, minz]
|
50 |
+
]
|
51 |
+
xz_plane = Poly3DCollection([verts])
|
52 |
+
xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5))
|
53 |
+
ax.add_collection3d(xz_plane)
|
54 |
+
|
55 |
+
# return ax
|
56 |
+
|
57 |
+
# (seq_len, joints_num, 3)
|
58 |
+
data = joints.copy().reshape(len(joints), -1, 3)
|
59 |
+
fig = plt.figure(figsize=figsize)
|
60 |
+
ax = p3.Axes3D(fig)
|
61 |
+
init()
|
62 |
+
MINS = data.min(axis=0).min(axis=0)
|
63 |
+
MAXS = data.max(axis=0).max(axis=0)
|
64 |
+
colors = ['red', 'blue', 'black', 'red', 'blue',
|
65 |
+
'darkblue', 'darkblue', 'darkblue', 'darkblue', 'darkblue',
|
66 |
+
'darkred', 'darkred', 'darkred', 'darkred', 'darkred']
|
67 |
+
frame_number = data.shape[0]
|
68 |
+
# print(data.shape)
|
69 |
+
|
70 |
+
height_offset = MINS[1]
|
71 |
+
data[:, :, 1] -= height_offset
|
72 |
+
trajec = data[:, 0, [0, 2]]
|
73 |
+
|
74 |
+
data[..., 0] -= data[:, 0:1, 0]
|
75 |
+
data[..., 2] -= data[:, 0:1, 2]
|
76 |
+
|
77 |
+
# print(trajec.shape)
|
78 |
+
|
79 |
+
def update(index):
|
80 |
+
# print(index)
|
81 |
+
ax.lines = []
|
82 |
+
ax.collections = []
|
83 |
+
ax.view_init(elev=120, azim=-90)
|
84 |
+
ax.dist = 7.5
|
85 |
+
# ax =
|
86 |
+
plot_xzPlane(MINS[0] - trajec[index, 0], MAXS[0] - trajec[index, 0], 0, MINS[2] - trajec[index, 1],
|
87 |
+
MAXS[2] - trajec[index, 1])
|
88 |
+
# ax.scatter(data[index, :22, 0], data[index, :22, 1], data[index, :22, 2], color='black', s=3)
|
89 |
+
|
90 |
+
if index > 1:
|
91 |
+
ax.plot3D(trajec[:index, 0] - trajec[index, 0], np.zeros_like(trajec[:index, 0]),
|
92 |
+
trajec[:index, 1] - trajec[index, 1], linewidth=1.0,
|
93 |
+
color='blue')
|
94 |
+
# ax = plot_xzPlane(ax, MINS[0], MAXS[0], 0, MINS[2], MAXS[2])
|
95 |
+
|
96 |
+
for i, (chain, color) in enumerate(zip(kinematic_tree, colors)):
|
97 |
+
# print(color)
|
98 |
+
if i < 5:
|
99 |
+
linewidth = 4.0
|
100 |
+
else:
|
101 |
+
linewidth = 2.0
|
102 |
+
ax.plot3D(data[index, chain, 0], data[index, chain, 1], data[index, chain, 2], linewidth=linewidth,
|
103 |
+
color=color)
|
104 |
+
# print(trajec[:index, 0].shape)
|
105 |
+
|
106 |
+
plt.axis('off')
|
107 |
+
ax.set_xticklabels([])
|
108 |
+
ax.set_yticklabels([])
|
109 |
+
ax.set_zticklabels([])
|
110 |
+
|
111 |
+
ani = FuncAnimation(fig, update, frames=frame_number, interval=1000 / fps, repeat=False)
|
112 |
+
|
113 |
+
# writer = FFMpegFileWriter(fps=fps)
|
114 |
+
ani.save(save_path, fps=fps)
|
115 |
+
plt.close()
|
utils/quaternion.py
ADDED
@@ -0,0 +1,423 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2018-present, Facebook, Inc.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
_EPS4 = np.finfo(float).eps * 4.0
|
12 |
+
|
13 |
+
_FLOAT_EPS = np.finfo(np.float).eps
|
14 |
+
|
15 |
+
# PyTorch-backed implementations
|
16 |
+
def qinv(q):
|
17 |
+
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
|
18 |
+
mask = torch.ones_like(q)
|
19 |
+
mask[..., 1:] = -mask[..., 1:]
|
20 |
+
return q * mask
|
21 |
+
|
22 |
+
|
23 |
+
def qinv_np(q):
|
24 |
+
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
|
25 |
+
return qinv(torch.from_numpy(q).float()).numpy()
|
26 |
+
|
27 |
+
|
28 |
+
def qnormalize(q):
|
29 |
+
assert q.shape[-1] == 4, 'q must be a tensor of shape (*, 4)'
|
30 |
+
return q / torch.norm(q, dim=-1, keepdim=True)
|
31 |
+
|
32 |
+
|
33 |
+
def qmul(q, r):
|
34 |
+
"""
|
35 |
+
Multiply quaternion(s) q with quaternion(s) r.
|
36 |
+
Expects two equally-sized tensors of shape (*, 4), where * denotes any number of dimensions.
|
37 |
+
Returns q*r as a tensor of shape (*, 4).
|
38 |
+
"""
|
39 |
+
assert q.shape[-1] == 4
|
40 |
+
assert r.shape[-1] == 4
|
41 |
+
|
42 |
+
original_shape = q.shape
|
43 |
+
|
44 |
+
# Compute outer product
|
45 |
+
terms = torch.bmm(r.view(-1, 4, 1), q.view(-1, 1, 4))
|
46 |
+
|
47 |
+
w = terms[:, 0, 0] - terms[:, 1, 1] - terms[:, 2, 2] - terms[:, 3, 3]
|
48 |
+
x = terms[:, 0, 1] + terms[:, 1, 0] - terms[:, 2, 3] + terms[:, 3, 2]
|
49 |
+
y = terms[:, 0, 2] + terms[:, 1, 3] + terms[:, 2, 0] - terms[:, 3, 1]
|
50 |
+
z = terms[:, 0, 3] - terms[:, 1, 2] + terms[:, 2, 1] + terms[:, 3, 0]
|
51 |
+
return torch.stack((w, x, y, z), dim=1).view(original_shape)
|
52 |
+
|
53 |
+
|
54 |
+
def qrot(q, v):
|
55 |
+
"""
|
56 |
+
Rotate vector(s) v about the rotation described by quaternion(s) q.
|
57 |
+
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v,
|
58 |
+
where * denotes any number of dimensions.
|
59 |
+
Returns a tensor of shape (*, 3).
|
60 |
+
"""
|
61 |
+
assert q.shape[-1] == 4
|
62 |
+
assert v.shape[-1] == 3
|
63 |
+
assert q.shape[:-1] == v.shape[:-1]
|
64 |
+
|
65 |
+
original_shape = list(v.shape)
|
66 |
+
# print(q.shape)
|
67 |
+
q = q.contiguous().view(-1, 4)
|
68 |
+
v = v.contiguous().view(-1, 3)
|
69 |
+
|
70 |
+
qvec = q[:, 1:]
|
71 |
+
uv = torch.cross(qvec, v, dim=1)
|
72 |
+
uuv = torch.cross(qvec, uv, dim=1)
|
73 |
+
return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape)
|
74 |
+
|
75 |
+
|
76 |
+
def qeuler(q, order, epsilon=0, deg=True):
|
77 |
+
"""
|
78 |
+
Convert quaternion(s) q to Euler angles.
|
79 |
+
Expects a tensor of shape (*, 4), where * denotes any number of dimensions.
|
80 |
+
Returns a tensor of shape (*, 3).
|
81 |
+
"""
|
82 |
+
assert q.shape[-1] == 4
|
83 |
+
|
84 |
+
original_shape = list(q.shape)
|
85 |
+
original_shape[-1] = 3
|
86 |
+
q = q.view(-1, 4)
|
87 |
+
|
88 |
+
q0 = q[:, 0]
|
89 |
+
q1 = q[:, 1]
|
90 |
+
q2 = q[:, 2]
|
91 |
+
q3 = q[:, 3]
|
92 |
+
|
93 |
+
if order == 'xyz':
|
94 |
+
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
|
95 |
+
y = torch.asin(torch.clamp(2 * (q1 * q3 + q0 * q2), -1 + epsilon, 1 - epsilon))
|
96 |
+
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
|
97 |
+
elif order == 'yzx':
|
98 |
+
x = torch.atan2(2 * (q0 * q1 - q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
|
99 |
+
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3))
|
100 |
+
z = torch.asin(torch.clamp(2 * (q1 * q2 + q0 * q3), -1 + epsilon, 1 - epsilon))
|
101 |
+
elif order == 'zxy':
|
102 |
+
x = torch.asin(torch.clamp(2 * (q0 * q1 + q2 * q3), -1 + epsilon, 1 - epsilon))
|
103 |
+
y = torch.atan2(2 * (q0 * q2 - q1 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
|
104 |
+
z = torch.atan2(2 * (q0 * q3 - q1 * q2), 1 - 2 * (q1 * q1 + q3 * q3))
|
105 |
+
elif order == 'xzy':
|
106 |
+
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
|
107 |
+
y = torch.atan2(2 * (q0 * q2 + q1 * q3), 1 - 2 * (q2 * q2 + q3 * q3))
|
108 |
+
z = torch.asin(torch.clamp(2 * (q0 * q3 - q1 * q2), -1 + epsilon, 1 - epsilon))
|
109 |
+
elif order == 'yxz':
|
110 |
+
x = torch.asin(torch.clamp(2 * (q0 * q1 - q2 * q3), -1 + epsilon, 1 - epsilon))
|
111 |
+
y = torch.atan2(2 * (q1 * q3 + q0 * q2), 1 - 2 * (q1 * q1 + q2 * q2))
|
112 |
+
z = torch.atan2(2 * (q1 * q2 + q0 * q3), 1 - 2 * (q1 * q1 + q3 * q3))
|
113 |
+
elif order == 'zyx':
|
114 |
+
x = torch.atan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
|
115 |
+
y = torch.asin(torch.clamp(2 * (q0 * q2 - q1 * q3), -1 + epsilon, 1 - epsilon))
|
116 |
+
z = torch.atan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
|
117 |
+
else:
|
118 |
+
raise
|
119 |
+
|
120 |
+
if deg:
|
121 |
+
return torch.stack((x, y, z), dim=1).view(original_shape) * 180 / np.pi
|
122 |
+
else:
|
123 |
+
return torch.stack((x, y, z), dim=1).view(original_shape)
|
124 |
+
|
125 |
+
|
126 |
+
# Numpy-backed implementations
|
127 |
+
|
128 |
+
def qmul_np(q, r):
|
129 |
+
q = torch.from_numpy(q).contiguous().float()
|
130 |
+
r = torch.from_numpy(r).contiguous().float()
|
131 |
+
return qmul(q, r).numpy()
|
132 |
+
|
133 |
+
|
134 |
+
def qrot_np(q, v):
|
135 |
+
q = torch.from_numpy(q).contiguous().float()
|
136 |
+
v = torch.from_numpy(v).contiguous().float()
|
137 |
+
return qrot(q, v).numpy()
|
138 |
+
|
139 |
+
|
140 |
+
def qeuler_np(q, order, epsilon=0, use_gpu=False):
|
141 |
+
if use_gpu:
|
142 |
+
q = torch.from_numpy(q).cuda().float()
|
143 |
+
return qeuler(q, order, epsilon).cpu().numpy()
|
144 |
+
else:
|
145 |
+
q = torch.from_numpy(q).contiguous().float()
|
146 |
+
return qeuler(q, order, epsilon).numpy()
|
147 |
+
|
148 |
+
|
149 |
+
def qfix(q):
|
150 |
+
"""
|
151 |
+
Enforce quaternion continuity across the time dimension by selecting
|
152 |
+
the representation (q or -q) with minimal distance (or, equivalently, maximal dot product)
|
153 |
+
between two consecutive frames.
|
154 |
+
|
155 |
+
Expects a tensor of shape (L, J, 4), where L is the sequence length and J is the number of joints.
|
156 |
+
Returns a tensor of the same shape.
|
157 |
+
"""
|
158 |
+
assert len(q.shape) == 3
|
159 |
+
assert q.shape[-1] == 4
|
160 |
+
|
161 |
+
result = q.copy()
|
162 |
+
dot_products = np.sum(q[1:] * q[:-1], axis=2)
|
163 |
+
mask = dot_products < 0
|
164 |
+
mask = (np.cumsum(mask, axis=0) % 2).astype(bool)
|
165 |
+
result[1:][mask] *= -1
|
166 |
+
return result
|
167 |
+
|
168 |
+
|
169 |
+
def euler2quat(e, order, deg=True):
|
170 |
+
"""
|
171 |
+
Convert Euler angles to quaternions.
|
172 |
+
"""
|
173 |
+
assert e.shape[-1] == 3
|
174 |
+
|
175 |
+
original_shape = list(e.shape)
|
176 |
+
original_shape[-1] = 4
|
177 |
+
|
178 |
+
e = e.view(-1, 3)
|
179 |
+
|
180 |
+
## if euler angles in degrees
|
181 |
+
if deg:
|
182 |
+
e = e * np.pi / 180.
|
183 |
+
|
184 |
+
x = e[:, 0]
|
185 |
+
y = e[:, 1]
|
186 |
+
z = e[:, 2]
|
187 |
+
|
188 |
+
rx = torch.stack((torch.cos(x / 2), torch.sin(x / 2), torch.zeros_like(x), torch.zeros_like(x)), dim=1)
|
189 |
+
ry = torch.stack((torch.cos(y / 2), torch.zeros_like(y), torch.sin(y / 2), torch.zeros_like(y)), dim=1)
|
190 |
+
rz = torch.stack((torch.cos(z / 2), torch.zeros_like(z), torch.zeros_like(z), torch.sin(z / 2)), dim=1)
|
191 |
+
|
192 |
+
result = None
|
193 |
+
for coord in order:
|
194 |
+
if coord == 'x':
|
195 |
+
r = rx
|
196 |
+
elif coord == 'y':
|
197 |
+
r = ry
|
198 |
+
elif coord == 'z':
|
199 |
+
r = rz
|
200 |
+
else:
|
201 |
+
raise
|
202 |
+
if result is None:
|
203 |
+
result = r
|
204 |
+
else:
|
205 |
+
result = qmul(result, r)
|
206 |
+
|
207 |
+
# Reverse antipodal representation to have a non-negative "w"
|
208 |
+
if order in ['xyz', 'yzx', 'zxy']:
|
209 |
+
result *= -1
|
210 |
+
|
211 |
+
return result.view(original_shape)
|
212 |
+
|
213 |
+
|
214 |
+
def expmap_to_quaternion(e):
|
215 |
+
"""
|
216 |
+
Convert axis-angle rotations (aka exponential maps) to quaternions.
|
217 |
+
Stable formula from "Practical Parameterization of Rotations Using the Exponential Map".
|
218 |
+
Expects a tensor of shape (*, 3), where * denotes any number of dimensions.
|
219 |
+
Returns a tensor of shape (*, 4).
|
220 |
+
"""
|
221 |
+
assert e.shape[-1] == 3
|
222 |
+
|
223 |
+
original_shape = list(e.shape)
|
224 |
+
original_shape[-1] = 4
|
225 |
+
e = e.reshape(-1, 3)
|
226 |
+
|
227 |
+
theta = np.linalg.norm(e, axis=1).reshape(-1, 1)
|
228 |
+
w = np.cos(0.5 * theta).reshape(-1, 1)
|
229 |
+
xyz = 0.5 * np.sinc(0.5 * theta / np.pi) * e
|
230 |
+
return np.concatenate((w, xyz), axis=1).reshape(original_shape)
|
231 |
+
|
232 |
+
|
233 |
+
def euler_to_quaternion(e, order):
|
234 |
+
"""
|
235 |
+
Convert Euler angles to quaternions.
|
236 |
+
"""
|
237 |
+
assert e.shape[-1] == 3
|
238 |
+
|
239 |
+
original_shape = list(e.shape)
|
240 |
+
original_shape[-1] = 4
|
241 |
+
|
242 |
+
e = e.reshape(-1, 3)
|
243 |
+
|
244 |
+
x = e[:, 0]
|
245 |
+
y = e[:, 1]
|
246 |
+
z = e[:, 2]
|
247 |
+
|
248 |
+
rx = np.stack((np.cos(x / 2), np.sin(x / 2), np.zeros_like(x), np.zeros_like(x)), axis=1)
|
249 |
+
ry = np.stack((np.cos(y / 2), np.zeros_like(y), np.sin(y / 2), np.zeros_like(y)), axis=1)
|
250 |
+
rz = np.stack((np.cos(z / 2), np.zeros_like(z), np.zeros_like(z), np.sin(z / 2)), axis=1)
|
251 |
+
|
252 |
+
result = None
|
253 |
+
for coord in order:
|
254 |
+
if coord == 'x':
|
255 |
+
r = rx
|
256 |
+
elif coord == 'y':
|
257 |
+
r = ry
|
258 |
+
elif coord == 'z':
|
259 |
+
r = rz
|
260 |
+
else:
|
261 |
+
raise
|
262 |
+
if result is None:
|
263 |
+
result = r
|
264 |
+
else:
|
265 |
+
result = qmul_np(result, r)
|
266 |
+
|
267 |
+
# Reverse antipodal representation to have a non-negative "w"
|
268 |
+
if order in ['xyz', 'yzx', 'zxy']:
|
269 |
+
result *= -1
|
270 |
+
|
271 |
+
return result.reshape(original_shape)
|
272 |
+
|
273 |
+
|
274 |
+
def quaternion_to_matrix(quaternions):
|
275 |
+
"""
|
276 |
+
Convert rotations given as quaternions to rotation matrices.
|
277 |
+
Args:
|
278 |
+
quaternions: quaternions with real part first,
|
279 |
+
as tensor of shape (..., 4).
|
280 |
+
Returns:
|
281 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
282 |
+
"""
|
283 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
284 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
285 |
+
|
286 |
+
o = torch.stack(
|
287 |
+
(
|
288 |
+
1 - two_s * (j * j + k * k),
|
289 |
+
two_s * (i * j - k * r),
|
290 |
+
two_s * (i * k + j * r),
|
291 |
+
two_s * (i * j + k * r),
|
292 |
+
1 - two_s * (i * i + k * k),
|
293 |
+
two_s * (j * k - i * r),
|
294 |
+
two_s * (i * k - j * r),
|
295 |
+
two_s * (j * k + i * r),
|
296 |
+
1 - two_s * (i * i + j * j),
|
297 |
+
),
|
298 |
+
-1,
|
299 |
+
)
|
300 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
301 |
+
|
302 |
+
|
303 |
+
def quaternion_to_matrix_np(quaternions):
|
304 |
+
q = torch.from_numpy(quaternions).contiguous().float()
|
305 |
+
return quaternion_to_matrix(q).numpy()
|
306 |
+
|
307 |
+
|
308 |
+
def quaternion_to_cont6d_np(quaternions):
|
309 |
+
rotation_mat = quaternion_to_matrix_np(quaternions)
|
310 |
+
cont_6d = np.concatenate([rotation_mat[..., 0], rotation_mat[..., 1]], axis=-1)
|
311 |
+
return cont_6d
|
312 |
+
|
313 |
+
|
314 |
+
def quaternion_to_cont6d(quaternions):
|
315 |
+
rotation_mat = quaternion_to_matrix(quaternions)
|
316 |
+
cont_6d = torch.cat([rotation_mat[..., 0], rotation_mat[..., 1]], dim=-1)
|
317 |
+
return cont_6d
|
318 |
+
|
319 |
+
|
320 |
+
def cont6d_to_matrix(cont6d):
|
321 |
+
assert cont6d.shape[-1] == 6, "The last dimension must be 6"
|
322 |
+
x_raw = cont6d[..., 0:3]
|
323 |
+
y_raw = cont6d[..., 3:6]
|
324 |
+
|
325 |
+
x = x_raw / torch.norm(x_raw, dim=-1, keepdim=True)
|
326 |
+
z = torch.cross(x, y_raw, dim=-1)
|
327 |
+
z = z / torch.norm(z, dim=-1, keepdim=True)
|
328 |
+
|
329 |
+
y = torch.cross(z, x, dim=-1)
|
330 |
+
|
331 |
+
x = x[..., None]
|
332 |
+
y = y[..., None]
|
333 |
+
z = z[..., None]
|
334 |
+
|
335 |
+
mat = torch.cat([x, y, z], dim=-1)
|
336 |
+
return mat
|
337 |
+
|
338 |
+
|
339 |
+
def cont6d_to_matrix_np(cont6d):
|
340 |
+
q = torch.from_numpy(cont6d).contiguous().float()
|
341 |
+
return cont6d_to_matrix(q).numpy()
|
342 |
+
|
343 |
+
|
344 |
+
def qpow(q0, t, dtype=torch.float):
|
345 |
+
''' q0 : tensor of quaternions
|
346 |
+
t: tensor of powers
|
347 |
+
'''
|
348 |
+
q0 = qnormalize(q0)
|
349 |
+
theta0 = torch.acos(q0[..., 0])
|
350 |
+
|
351 |
+
## if theta0 is close to zero, add epsilon to avoid NaNs
|
352 |
+
mask = (theta0 <= 10e-10) * (theta0 >= -10e-10)
|
353 |
+
theta0 = (1 - mask) * theta0 + mask * 10e-10
|
354 |
+
v0 = q0[..., 1:] / torch.sin(theta0).view(-1, 1)
|
355 |
+
|
356 |
+
if isinstance(t, torch.Tensor):
|
357 |
+
q = torch.zeros(t.shape + q0.shape)
|
358 |
+
theta = t.view(-1, 1) * theta0.view(1, -1)
|
359 |
+
else: ## if t is a number
|
360 |
+
q = torch.zeros(q0.shape)
|
361 |
+
theta = t * theta0
|
362 |
+
|
363 |
+
q[..., 0] = torch.cos(theta)
|
364 |
+
q[..., 1:] = v0 * torch.sin(theta).unsqueeze(-1)
|
365 |
+
|
366 |
+
return q.to(dtype)
|
367 |
+
|
368 |
+
|
369 |
+
def qslerp(q0, q1, t):
|
370 |
+
'''
|
371 |
+
q0: starting quaternion
|
372 |
+
q1: ending quaternion
|
373 |
+
t: array of points along the way
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
Tensor of Slerps: t.shape + q0.shape
|
377 |
+
'''
|
378 |
+
|
379 |
+
q0 = qnormalize(q0)
|
380 |
+
q1 = qnormalize(q1)
|
381 |
+
q_ = qpow(qmul(q1, qinv(q0)), t)
|
382 |
+
|
383 |
+
return qmul(q_,
|
384 |
+
q0.contiguous().view(torch.Size([1] * len(t.shape)) + q0.shape).expand(t.shape + q0.shape).contiguous())
|
385 |
+
|
386 |
+
|
387 |
+
def qbetween(v0, v1):
|
388 |
+
'''
|
389 |
+
find the quaternion used to rotate v0 to v1
|
390 |
+
'''
|
391 |
+
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)'
|
392 |
+
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)'
|
393 |
+
|
394 |
+
v = torch.cross(v0, v1)
|
395 |
+
w = torch.sqrt((v0 ** 2).sum(dim=-1, keepdim=True) * (v1 ** 2).sum(dim=-1, keepdim=True)) + (v0 * v1).sum(dim=-1,
|
396 |
+
keepdim=True)
|
397 |
+
return qnormalize(torch.cat([w, v], dim=-1))
|
398 |
+
|
399 |
+
|
400 |
+
def qbetween_np(v0, v1):
|
401 |
+
'''
|
402 |
+
find the quaternion used to rotate v0 to v1
|
403 |
+
'''
|
404 |
+
assert v0.shape[-1] == 3, 'v0 must be of the shape (*, 3)'
|
405 |
+
assert v1.shape[-1] == 3, 'v1 must be of the shape (*, 3)'
|
406 |
+
|
407 |
+
v0 = torch.from_numpy(v0).float()
|
408 |
+
v1 = torch.from_numpy(v1).float()
|
409 |
+
return qbetween(v0, v1).numpy()
|
410 |
+
|
411 |
+
|
412 |
+
def lerp(p0, p1, t):
|
413 |
+
if not isinstance(t, torch.Tensor):
|
414 |
+
t = torch.Tensor([t])
|
415 |
+
|
416 |
+
new_shape = t.shape + p0.shape
|
417 |
+
new_view_t = t.shape + torch.Size([1] * len(p0.shape))
|
418 |
+
new_view_p = torch.Size([1] * len(t.shape)) + p0.shape
|
419 |
+
p0 = p0.view(new_view_p).expand(new_shape)
|
420 |
+
p1 = p1.view(new_view_p).expand(new_shape)
|
421 |
+
t = t.view(new_view_t).expand(new_shape)
|
422 |
+
|
423 |
+
return p0 + t * (p1 - p0)
|
utils/skeleton.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from utils.quaternion import *
|
2 |
+
import scipy.ndimage.filters as filters
|
3 |
+
|
4 |
+
class Skeleton(object):
|
5 |
+
def __init__(self, offset, kinematic_tree, device):
|
6 |
+
self.device = device
|
7 |
+
self._raw_offset_np = offset.numpy()
|
8 |
+
self._raw_offset = offset.clone().detach().to(device).float()
|
9 |
+
self._kinematic_tree = kinematic_tree
|
10 |
+
self._offset = None
|
11 |
+
self._parents = [0] * len(self._raw_offset)
|
12 |
+
self._parents[0] = -1
|
13 |
+
for chain in self._kinematic_tree:
|
14 |
+
for j in range(1, len(chain)):
|
15 |
+
self._parents[chain[j]] = chain[j-1]
|
16 |
+
|
17 |
+
def njoints(self):
|
18 |
+
return len(self._raw_offset)
|
19 |
+
|
20 |
+
def offset(self):
|
21 |
+
return self._offset
|
22 |
+
|
23 |
+
def set_offset(self, offsets):
|
24 |
+
self._offset = offsets.clone().detach().to(self.device).float()
|
25 |
+
|
26 |
+
def kinematic_tree(self):
|
27 |
+
return self._kinematic_tree
|
28 |
+
|
29 |
+
def parents(self):
|
30 |
+
return self._parents
|
31 |
+
|
32 |
+
# joints (batch_size, joints_num, 3)
|
33 |
+
def get_offsets_joints_batch(self, joints):
|
34 |
+
assert len(joints.shape) == 3
|
35 |
+
_offsets = self._raw_offset.expand(joints.shape[0], -1, -1).clone()
|
36 |
+
for i in range(1, self._raw_offset.shape[0]):
|
37 |
+
_offsets[:, i] = torch.norm(joints[:, i] - joints[:, self._parents[i]], p=2, dim=1)[:, None] * _offsets[:, i]
|
38 |
+
|
39 |
+
self._offset = _offsets.detach()
|
40 |
+
return _offsets
|
41 |
+
|
42 |
+
# joints (joints_num, 3)
|
43 |
+
def get_offsets_joints(self, joints):
|
44 |
+
assert len(joints.shape) == 2
|
45 |
+
_offsets = self._raw_offset.clone()
|
46 |
+
for i in range(1, self._raw_offset.shape[0]):
|
47 |
+
# print(joints.shape)
|
48 |
+
_offsets[i] = torch.norm(joints[i] - joints[self._parents[i]], p=2, dim=0) * _offsets[i]
|
49 |
+
|
50 |
+
self._offset = _offsets.detach()
|
51 |
+
return _offsets
|
52 |
+
|
53 |
+
# face_joint_idx should follow the order of right hip, left hip, right shoulder, left shoulder
|
54 |
+
# joints (batch_size, joints_num, 3)
|
55 |
+
def inverse_kinematics_np(self, joints, face_joint_idx, smooth_forward=False):
|
56 |
+
assert len(face_joint_idx) == 4
|
57 |
+
'''Get Forward Direction'''
|
58 |
+
l_hip, r_hip, sdr_r, sdr_l = face_joint_idx
|
59 |
+
across1 = joints[:, r_hip] - joints[:, l_hip]
|
60 |
+
across2 = joints[:, sdr_r] - joints[:, sdr_l]
|
61 |
+
across = across1 + across2
|
62 |
+
across = across / np.sqrt((across**2).sum(axis=-1))[:, np.newaxis]
|
63 |
+
# print(across1.shape, across2.shape)
|
64 |
+
|
65 |
+
# forward (batch_size, 3)
|
66 |
+
forward = np.cross(np.array([[0, 1, 0]]), across, axis=-1)
|
67 |
+
if smooth_forward:
|
68 |
+
forward = filters.gaussian_filter1d(forward, 20, axis=0, mode='nearest')
|
69 |
+
# forward (batch_size, 3)
|
70 |
+
forward = forward / np.sqrt((forward**2).sum(axis=-1))[..., np.newaxis]
|
71 |
+
|
72 |
+
'''Get Root Rotation'''
|
73 |
+
target = np.array([[0,0,1]]).repeat(len(forward), axis=0)
|
74 |
+
root_quat = qbetween_np(forward, target)
|
75 |
+
|
76 |
+
'''Inverse Kinematics'''
|
77 |
+
# quat_params (batch_size, joints_num, 4)
|
78 |
+
# print(joints.shape[:-1])
|
79 |
+
quat_params = np.zeros(joints.shape[:-1] + (4,))
|
80 |
+
# print(quat_params.shape)
|
81 |
+
root_quat[0] = np.array([[1.0, 0.0, 0.0, 0.0]])
|
82 |
+
quat_params[:, 0] = root_quat
|
83 |
+
# quat_params[0, 0] = np.array([[1.0, 0.0, 0.0, 0.0]])
|
84 |
+
for chain in self._kinematic_tree:
|
85 |
+
R = root_quat
|
86 |
+
for j in range(len(chain) - 1):
|
87 |
+
# (batch, 3)
|
88 |
+
u = self._raw_offset_np[chain[j+1]][np.newaxis,...].repeat(len(joints), axis=0)
|
89 |
+
# print(u.shape)
|
90 |
+
# (batch, 3)
|
91 |
+
v = joints[:, chain[j+1]] - joints[:, chain[j]]
|
92 |
+
v = v / np.sqrt((v**2).sum(axis=-1))[:, np.newaxis]
|
93 |
+
# print(u.shape, v.shape)
|
94 |
+
rot_u_v = qbetween_np(u, v)
|
95 |
+
|
96 |
+
R_loc = qmul_np(qinv_np(R), rot_u_v)
|
97 |
+
|
98 |
+
quat_params[:,chain[j + 1], :] = R_loc
|
99 |
+
R = qmul_np(R, R_loc)
|
100 |
+
|
101 |
+
return quat_params
|
102 |
+
|
103 |
+
# Be sure root joint is at the beginning of kinematic chains
|
104 |
+
def forward_kinematics(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
|
105 |
+
# quat_params (batch_size, joints_num, 4)
|
106 |
+
# joints (batch_size, joints_num, 3)
|
107 |
+
# root_pos (batch_size, 3)
|
108 |
+
if skel_joints is not None:
|
109 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
110 |
+
if len(self._offset.shape) == 2:
|
111 |
+
offsets = self._offset.expand(quat_params.shape[0], -1, -1)
|
112 |
+
joints = torch.zeros(quat_params.shape[:-1] + (3,)).to(self.device)
|
113 |
+
joints[:, 0] = root_pos
|
114 |
+
for chain in self._kinematic_tree:
|
115 |
+
if do_root_R:
|
116 |
+
R = quat_params[:, 0]
|
117 |
+
else:
|
118 |
+
R = torch.tensor([[1.0, 0.0, 0.0, 0.0]]).expand(len(quat_params), -1).detach().to(self.device)
|
119 |
+
for i in range(1, len(chain)):
|
120 |
+
R = qmul(R, quat_params[:, chain[i]])
|
121 |
+
offset_vec = offsets[:, chain[i]]
|
122 |
+
joints[:, chain[i]] = qrot(R, offset_vec) + joints[:, chain[i-1]]
|
123 |
+
return joints
|
124 |
+
|
125 |
+
# Be sure root joint is at the beginning of kinematic chains
|
126 |
+
def forward_kinematics_np(self, quat_params, root_pos, skel_joints=None, do_root_R=True):
|
127 |
+
# quat_params (batch_size, joints_num, 4)
|
128 |
+
# joints (batch_size, joints_num, 3)
|
129 |
+
# root_pos (batch_size, 3)
|
130 |
+
if skel_joints is not None:
|
131 |
+
skel_joints = torch.from_numpy(skel_joints)
|
132 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
133 |
+
if len(self._offset.shape) == 2:
|
134 |
+
offsets = self._offset.expand(quat_params.shape[0], -1, -1)
|
135 |
+
offsets = offsets.numpy()
|
136 |
+
joints = np.zeros(quat_params.shape[:-1] + (3,))
|
137 |
+
joints[:, 0] = root_pos
|
138 |
+
for chain in self._kinematic_tree:
|
139 |
+
if do_root_R:
|
140 |
+
R = quat_params[:, 0]
|
141 |
+
else:
|
142 |
+
R = np.array([[1.0, 0.0, 0.0, 0.0]]).repeat(len(quat_params), axis=0)
|
143 |
+
for i in range(1, len(chain)):
|
144 |
+
R = qmul_np(R, quat_params[:, chain[i]])
|
145 |
+
offset_vec = offsets[:, chain[i]]
|
146 |
+
joints[:, chain[i]] = qrot_np(R, offset_vec) + joints[:, chain[i - 1]]
|
147 |
+
return joints
|
148 |
+
|
149 |
+
def forward_kinematics_cont6d_np(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
|
150 |
+
# cont6d_params (batch_size, joints_num, 6)
|
151 |
+
# joints (batch_size, joints_num, 3)
|
152 |
+
# root_pos (batch_size, 3)
|
153 |
+
if skel_joints is not None:
|
154 |
+
skel_joints = torch.from_numpy(skel_joints)
|
155 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
156 |
+
if len(self._offset.shape) == 2:
|
157 |
+
offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
|
158 |
+
offsets = offsets.numpy()
|
159 |
+
joints = np.zeros(cont6d_params.shape[:-1] + (3,))
|
160 |
+
joints[:, 0] = root_pos
|
161 |
+
for chain in self._kinematic_tree:
|
162 |
+
if do_root_R:
|
163 |
+
matR = cont6d_to_matrix_np(cont6d_params[:, 0])
|
164 |
+
else:
|
165 |
+
matR = np.eye(3)[np.newaxis, :].repeat(len(cont6d_params), axis=0)
|
166 |
+
for i in range(1, len(chain)):
|
167 |
+
matR = np.matmul(matR, cont6d_to_matrix_np(cont6d_params[:, chain[i]]))
|
168 |
+
offset_vec = offsets[:, chain[i]][..., np.newaxis]
|
169 |
+
# print(matR.shape, offset_vec.shape)
|
170 |
+
joints[:, chain[i]] = np.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
|
171 |
+
return joints
|
172 |
+
|
173 |
+
def forward_kinematics_cont6d(self, cont6d_params, root_pos, skel_joints=None, do_root_R=True):
|
174 |
+
# cont6d_params (batch_size, joints_num, 6)
|
175 |
+
# joints (batch_size, joints_num, 3)
|
176 |
+
# root_pos (batch_size, 3)
|
177 |
+
if skel_joints is not None:
|
178 |
+
# skel_joints = torch.from_numpy(skel_joints)
|
179 |
+
offsets = self.get_offsets_joints_batch(skel_joints)
|
180 |
+
if len(self._offset.shape) == 2:
|
181 |
+
offsets = self._offset.expand(cont6d_params.shape[0], -1, -1)
|
182 |
+
joints = torch.zeros(cont6d_params.shape[:-1] + (3,)).to(cont6d_params.device)
|
183 |
+
joints[..., 0, :] = root_pos
|
184 |
+
for chain in self._kinematic_tree:
|
185 |
+
if do_root_R:
|
186 |
+
matR = cont6d_to_matrix(cont6d_params[:, 0])
|
187 |
+
else:
|
188 |
+
matR = torch.eye(3).expand((len(cont6d_params), -1, -1)).detach().to(cont6d_params.device)
|
189 |
+
for i in range(1, len(chain)):
|
190 |
+
matR = torch.matmul(matR, cont6d_to_matrix(cont6d_params[:, chain[i]]))
|
191 |
+
offset_vec = offsets[:, chain[i]].unsqueeze(-1)
|
192 |
+
# print(matR.shape, offset_vec.shape)
|
193 |
+
joints[:, chain[i]] = torch.matmul(matR, offset_vec).squeeze(-1) + joints[:, chain[i-1]]
|
194 |
+
return joints
|
195 |
+
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
|
utils/utils.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
# import cv2
|
4 |
+
from PIL import Image
|
5 |
+
from utils import paramUtil
|
6 |
+
import math
|
7 |
+
import time
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
from scipy.ndimage import gaussian_filter
|
10 |
+
|
11 |
+
|
12 |
+
def mkdir(path):
|
13 |
+
if not os.path.exists(path):
|
14 |
+
os.makedirs(path)
|
15 |
+
|
16 |
+
COLORS = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0],
|
17 |
+
[0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255],
|
18 |
+
[170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85]]
|
19 |
+
|
20 |
+
MISSING_VALUE = -1
|
21 |
+
|
22 |
+
def save_image(image_numpy, image_path):
|
23 |
+
img_pil = Image.fromarray(image_numpy)
|
24 |
+
img_pil.save(image_path)
|
25 |
+
|
26 |
+
|
27 |
+
def save_logfile(log_loss, save_path):
|
28 |
+
with open(save_path, 'wt') as f:
|
29 |
+
for k, v in log_loss.items():
|
30 |
+
w_line = k
|
31 |
+
for digit in v:
|
32 |
+
w_line += ' %.3f' % digit
|
33 |
+
f.write(w_line + '\n')
|
34 |
+
|
35 |
+
|
36 |
+
def print_current_loss(start_time, niter_state, losses, epoch=None, inner_iter=None):
|
37 |
+
|
38 |
+
def as_minutes(s):
|
39 |
+
m = math.floor(s / 60)
|
40 |
+
s -= m * 60
|
41 |
+
return '%dm %ds' % (m, s)
|
42 |
+
|
43 |
+
def time_since(since, percent):
|
44 |
+
now = time.time()
|
45 |
+
s = now - since
|
46 |
+
es = s / percent
|
47 |
+
rs = es - s
|
48 |
+
return '%s (- %s)' % (as_minutes(s), as_minutes(rs))
|
49 |
+
|
50 |
+
if epoch is not None:
|
51 |
+
print('epoch: %3d niter: %6d inner_iter: %4d' % (epoch, niter_state, inner_iter), end=" ")
|
52 |
+
|
53 |
+
now = time.time()
|
54 |
+
message = '%s'%(as_minutes(now - start_time))
|
55 |
+
|
56 |
+
for k, v in losses.items():
|
57 |
+
message += ' %s: %.4f ' % (k, v)
|
58 |
+
print(message)
|
59 |
+
|
60 |
+
|
61 |
+
def compose_gif_img_list(img_list, fp_out, duration):
|
62 |
+
img, *imgs = [Image.fromarray(np.array(image)) for image in img_list]
|
63 |
+
img.save(fp=fp_out, format='GIF', append_images=imgs, optimize=False,
|
64 |
+
save_all=True, loop=0, duration=duration)
|
65 |
+
|
66 |
+
|
67 |
+
def save_images(visuals, image_path):
|
68 |
+
if not os.path.exists(image_path):
|
69 |
+
os.makedirs(image_path)
|
70 |
+
|
71 |
+
for i, (label, img_numpy) in enumerate(visuals.items()):
|
72 |
+
img_name = '%d_%s.jpg' % (i, label)
|
73 |
+
save_path = os.path.join(image_path, img_name)
|
74 |
+
save_image(img_numpy, save_path)
|
75 |
+
|
76 |
+
|
77 |
+
def save_images_test(visuals, image_path, from_name, to_name):
|
78 |
+
if not os.path.exists(image_path):
|
79 |
+
os.makedirs(image_path)
|
80 |
+
|
81 |
+
for i, (label, img_numpy) in enumerate(visuals.items()):
|
82 |
+
img_name = "%s_%s_%s" % (from_name, to_name, label)
|
83 |
+
save_path = os.path.join(image_path, img_name)
|
84 |
+
save_image(img_numpy, save_path)
|
85 |
+
|
86 |
+
|
87 |
+
def compose_and_save_img(img_list, save_dir, img_name, col=4, row=1, img_size=(256, 200)):
|
88 |
+
# print(col, row)
|
89 |
+
compose_img = compose_image(img_list, col, row, img_size)
|
90 |
+
if not os.path.exists(save_dir):
|
91 |
+
os.makedirs(save_dir)
|
92 |
+
img_path = os.path.join(save_dir, img_name)
|
93 |
+
# print(img_path)
|
94 |
+
compose_img.save(img_path)
|
95 |
+
|
96 |
+
|
97 |
+
def compose_image(img_list, col, row, img_size):
|
98 |
+
to_image = Image.new('RGB', (col * img_size[0], row * img_size[1]))
|
99 |
+
for y in range(0, row):
|
100 |
+
for x in range(0, col):
|
101 |
+
from_img = Image.fromarray(img_list[y * col + x])
|
102 |
+
# print((x * img_size[0], y*img_size[1],
|
103 |
+
# (x + 1) * img_size[0], (y + 1) * img_size[1]))
|
104 |
+
paste_area = (x * img_size[0], y*img_size[1],
|
105 |
+
(x + 1) * img_size[0], (y + 1) * img_size[1])
|
106 |
+
to_image.paste(from_img, paste_area)
|
107 |
+
# to_image[y*img_size[1]:(y + 1) * img_size[1], x * img_size[0] :(x + 1) * img_size[0]] = from_img
|
108 |
+
return to_image
|
109 |
+
|
110 |
+
|
111 |
+
def list_cut_average(ll, intervals):
|
112 |
+
if intervals == 1:
|
113 |
+
return ll
|
114 |
+
|
115 |
+
bins = math.ceil(len(ll) * 1.0 / intervals)
|
116 |
+
ll_new = []
|
117 |
+
for i in range(bins):
|
118 |
+
l_low = intervals * i
|
119 |
+
l_high = l_low + intervals
|
120 |
+
l_high = l_high if l_high < len(ll) else len(ll)
|
121 |
+
ll_new.append(np.mean(ll[l_low:l_high]))
|
122 |
+
return ll_new
|
123 |
+
|
124 |
+
|
125 |
+
def motion_temporal_filter(motion, sigma=1):
|
126 |
+
motion = motion.reshape(motion.shape[0], -1)
|
127 |
+
# print(motion.shape)
|
128 |
+
for i in range(motion.shape[1]):
|
129 |
+
motion[:, i] = gaussian_filter(motion[:, i], sigma=sigma, mode="nearest")
|
130 |
+
return motion.reshape(motion.shape[0], -1, 3)
|
131 |
+
|
utils/word_vectorizer.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
from os.path import join as pjoin
|
4 |
+
|
5 |
+
POS_enumerator = {
|
6 |
+
'VERB': 0,
|
7 |
+
'NOUN': 1,
|
8 |
+
'DET': 2,
|
9 |
+
'ADP': 3,
|
10 |
+
'NUM': 4,
|
11 |
+
'AUX': 5,
|
12 |
+
'PRON': 6,
|
13 |
+
'ADJ': 7,
|
14 |
+
'ADV': 8,
|
15 |
+
'Loc_VIP': 9,
|
16 |
+
'Body_VIP': 10,
|
17 |
+
'Obj_VIP': 11,
|
18 |
+
'Act_VIP': 12,
|
19 |
+
'Desc_VIP': 13,
|
20 |
+
'OTHER': 14,
|
21 |
+
}
|
22 |
+
|
23 |
+
Loc_list = ('left', 'right', 'clockwise', 'counterclockwise', 'anticlockwise', 'forward', 'back', 'backward',
|
24 |
+
'up', 'down', 'straight', 'curve')
|
25 |
+
|
26 |
+
Body_list = ('arm', 'chin', 'foot', 'feet', 'face', 'hand', 'mouth', 'leg', 'waist', 'eye', 'knee', 'shoulder', 'thigh')
|
27 |
+
|
28 |
+
Obj_List = ('stair', 'dumbbell', 'chair', 'window', 'floor', 'car', 'ball', 'handrail', 'baseball', 'basketball')
|
29 |
+
|
30 |
+
Act_list = ('walk', 'run', 'swing', 'pick', 'bring', 'kick', 'put', 'squat', 'throw', 'hop', 'dance', 'jump', 'turn',
|
31 |
+
'stumble', 'dance', 'stop', 'sit', 'lift', 'lower', 'raise', 'wash', 'stand', 'kneel', 'stroll',
|
32 |
+
'rub', 'bend', 'balance', 'flap', 'jog', 'shuffle', 'lean', 'rotate', 'spin', 'spread', 'climb')
|
33 |
+
|
34 |
+
Desc_list = ('slowly', 'carefully', 'fast', 'careful', 'slow', 'quickly', 'happy', 'angry', 'sad', 'happily',
|
35 |
+
'angrily', 'sadly')
|
36 |
+
|
37 |
+
VIP_dict = {
|
38 |
+
'Loc_VIP': Loc_list,
|
39 |
+
'Body_VIP': Body_list,
|
40 |
+
'Obj_VIP': Obj_List,
|
41 |
+
'Act_VIP': Act_list,
|
42 |
+
'Desc_VIP': Desc_list,
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
class WordVectorizer(object):
|
47 |
+
def __init__(self, meta_root, prefix):
|
48 |
+
vectors = np.load(pjoin(meta_root, '%s_data.npy'%prefix))
|
49 |
+
words = pickle.load(open(pjoin(meta_root, '%s_words.pkl'%prefix), 'rb'))
|
50 |
+
word2idx = pickle.load(open(pjoin(meta_root, '%s_idx.pkl'%prefix), 'rb'))
|
51 |
+
self.word2vec = {w: vectors[word2idx[w]] for w in words}
|
52 |
+
|
53 |
+
def _get_pos_ohot(self, pos):
|
54 |
+
pos_vec = np.zeros(len(POS_enumerator))
|
55 |
+
if pos in POS_enumerator:
|
56 |
+
pos_vec[POS_enumerator[pos]] = 1
|
57 |
+
else:
|
58 |
+
pos_vec[POS_enumerator['OTHER']] = 1
|
59 |
+
return pos_vec
|
60 |
+
|
61 |
+
def __len__(self):
|
62 |
+
return len(self.word2vec)
|
63 |
+
|
64 |
+
def __getitem__(self, item):
|
65 |
+
word, pos = item.split('/')
|
66 |
+
if word in self.word2vec:
|
67 |
+
word_vec = self.word2vec[word]
|
68 |
+
vip_pos = None
|
69 |
+
for key, values in VIP_dict.items():
|
70 |
+
if word in values:
|
71 |
+
vip_pos = key
|
72 |
+
break
|
73 |
+
if vip_pos is not None:
|
74 |
+
pos_vec = self._get_pos_ohot(vip_pos)
|
75 |
+
else:
|
76 |
+
pos_vec = self._get_pos_ohot(pos)
|
77 |
+
else:
|
78 |
+
word_vec = self.word2vec['unk']
|
79 |
+
pos_vec = self._get_pos_ohot('OTHER')
|
80 |
+
return word_vec, pos_vec
|