import gradio as gr from fastai.vision.all import * import timm.models.convnext learn = load_learner('pets_model.pkl') def classify_image(img): categories = learn.dls.vocab pred, idx, prob = learn.predict(tensor(img)) d = [(v, k) for k, v in dict(zip(categories, map(float, prob))).items()] return f'{max(d)[1]}: {max(d)[0]:.04f}' iface = gr.Interface(fn=classify_image, inputs=gr.inputs.Image(type="pil"), outputs="text") iface.launch()