import spaces import gradio as gr import transformers from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig,AwqConfig import torch import os import bitnet import torch torch.jit.script = lambda f: f key = os.environ.get("key") from huggingface_hub import login login(key) from bitnet import replace_linears_in_hf nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16 ) model_id = "Nexusflow/Starling-LM-7B-beta" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, # load_in_8bit=True, # quantization_config=nf4_config, torch_dtype = torch.bfloat16, # device_map="auto" ) replace_linears_in_hf(model) model.to('cuda').eval() @spaces.GPU def generate_response(user_input, max_new_tokens, temperature): os.system("nvidia-smi") messages = [{"role": "user", "content": user_input}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") input_ids = input_ids.to(model.device) os.system("nvidia-smi") gen_tokens = model.generate( input_ids = input_ids, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, ) gen_text = tokenizer.decode(gen_tokens[0], skip_special_tokens=True) if gen_text.startswith(user_input): gen_text = gen_text[len(user_input):].lstrip() return gen_text examples = [ {"message": "What is the weather like today?", "max_new_tokens": 250, "temperature": 0.5}, {"message": "Tell me a joke.", "max_new_tokens": 650, "temperature": 0.7}, {"message": "Explain the concept of machine learning.", "max_new_tokens": 980, "temperature": 0.4} ] example_choices = [f"Example {i+1}" for i in range(len(examples))] def load_example(choice): index = example_choices.index(choice) example = examples[index] return example["message"], example["max_new_tokens"], example["temperature"] with gr.Blocks() as demo: with gr.Row(): max_new_tokens_slider = gr.Slider(minimum=100, maximum=4000, value=980, label="Max New Tokens") temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.3, label="Temperature") message_box = gr.Textbox(lines=2, label="Your Message") generate_button = gr.Button("Try🫡Command-R") output_box = gr.Textbox(label="🫡Command-R") generate_button.click( fn=generate_response, inputs=[message_box, max_new_tokens_slider, temperature_slider], outputs=output_box ) example_dropdown = gr.Dropdown(label="🫡Load Example", choices=example_choices) example_button = gr.Button("🫡Load") example_button.click( fn=load_example, inputs=example_dropdown, outputs=[message_box, max_new_tokens_slider, temperature_slider] ) demo.launch()