code / app.py
minhdang's picture
Update app.py
6ec5496 verified
raw
history blame
5.75 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from transformers import BitsAndBytesConfig
nf4_config = BitsAndBytesConfig(
load_in_8bit=True,
bnb_8bit_use_double_quant=True,
bnb_8bit_quant_type="nf8",
)
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
total_count=0
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
dict_map = {
"òa": "oà",
"Òa": "Oà",
"ÒA": "OÀ",
"óa": "oá",
"Óa": "Oá",
"ÓA": "OÁ",
"ỏa": "oả",
"Ỏa": "Oả",
"ỎA": "OẢ",
"õa": "oã",
"Õa": "Oã",
"ÕA": "OÃ",
"ọa": "oạ",
"Ọa": "Oạ",
"ỌA": "OẠ",
"òe": "oè",
"Òe": "Oè",
"ÒE": "OÈ",
"óe": "oé",
"Óe": "Oé",
"ÓE": "OÉ",
"ỏe": "oẻ",
"Ỏe": "Oẻ",
"ỎE": "OẺ",
"õe": "oẽ",
"Õe": "Oẽ",
"ÕE": "OẼ",
"ọe": "oẹ",
"Ọe": "Oẹ",
"ỌE": "OẸ",
"ùy": "uỳ",
"Ùy": "Uỳ",
"ÙY": "UỲ",
"úy": "uý",
"Úy": "Uý",
"ÚY": "UÝ",
"ủy": "uỷ",
"Ủy": "Uỷ",
"ỦY": "UỶ",
"ũy": "uỹ",
"Ũy": "Uỹ",
"ŨY": "UỸ",
"ụy": "uỵ",
"Ụy": "Uỵ",
"ỤY": "UỴ",
}
tokenizer_vi2en = AutoTokenizer.from_pretrained("vinai/vinai-translate-vi2en-v2", src_lang="vi_VN")
model_vi2en = AutoModelForSeq2SeqLM.from_pretrained("vinai/vinai-translate-vi2en-v2",device_map="auto")
def translate_vi2en(vi_text: str) -> str:
for i, j in dict_map.items():
vi_text = vi_text.replace(i, j)
input_ids = tokenizer_vi2en(vi_text, return_tensors="pt").to("cuda").input_ids
output_ids = model_vi2en.generate(
input_ids,
decoder_start_token_id=tokenizer_vi2en.lang_code_to_id["en_XX"],
num_return_sequences=1,
# # With sampling
# do_sample=True,
# top_k=100,
# top_p=0.8,
# With beam search
num_beams=5,
early_stopping=True
)
en_text = tokenizer_vi2en.batch_decode(output_ids, skip_special_tokens=True)
en_text = " ".join(en_text)
return en_text
DESCRIPTION="""CODE"""
model_id = "deepseek-ai/deepseek-coder-7b-instruct-v1.5"
model = AutoModelForCausalLM.from_pretrained(model_id,device_map="auto",torch_dtype=torch.bfloat16)
tokenizer=AutoTokenizer.from_pretrained(model_id)
tokenizer.use_defaul_system_prompt=True
os.system("nvidia-smi")
@spaces.GPU
def gen(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1,
)->Iterator[str]:
global total_count
total_count += 1
print(total_count)
os.system("nvidia-smi")
conversation = []
message = translate_vi2en(message)
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=False,
top_p=top_p,
top_k=top_k,
num_beams=1,
# temperature=temperature,
repetition_penalty=repetition_penalty,
eos_token_id=32021
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs).replace("<|EOT|>","")
chat_interface = gr.ChatInterface(
fn=gen,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
# gr.Slider(
# label="Temperature",
# minimum=0,
# maximum=4.0,
# step=0.1,
# value=0,
# ),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1,
),
],
stop_btn=gr.Button("Stop"),
examples=[
["implement snake game using pygame"],
["Can you explain briefly to me what is the Python programming language?"],
["write a program to find the factorial of a number"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=100).launch()