File size: 6,094 Bytes
cdb4c48
e77ff5c
cdb4c48
 
c71518c
be33f4b
 
2e6f85e
aeed542
 
cdb4c48
 
aeed542
 
2e6f85e
29a3d5a
 
 
 
 
 
 
 
 
 
 
 
cdb4c48
29a3d5a
 
 
 
 
 
 
 
 
 
7aa2636
29a3d5a
cdb4c48
7aa2636
29a3d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb4c48
29a3d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11b4d2f
 
29a3d5a
 
 
 
 
 
 
 
cdb4c48
29a3d5a
 
 
 
 
 
 
 
 
cdb4c48
 
29a3d5a
53fae21
29a3d5a
cdb4c48
29a3d5a
 
 
cdb4c48
29a3d5a
 
 
 
 
 
 
cdb4c48
29a3d5a
 
 
 
 
 
 
 
 
 
 
cdb4c48
29a3d5a
 
cdb4c48
29a3d5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90cf636
 
 
 
 
 
 
 
 
 
de50b00
 
cdb4c48
90cf636
 
 
 
 
 
 
 
 
 
de50b00
 
29a3d5a
 
 
 
 
 
 
 
90cf636
29a3d5a
cdb4c48
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import shlex
import os
import subprocess
import spaces
import torch
import torch
torch.jit.script = lambda f: f
# install packages for mamba
def install():
    print("Install personal packages", flush=True)
    subprocess.run(shlex.split("pip install causal_conv1d-1.0.0-cp310-cp310-linux_x86_64.whl"))
    subprocess.run(shlex.split("pip install mamba_ssm-1.0.1-cp310-cp310-linux_x86_64.whl"))

install()

import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import torchvision.transforms as T
from PIL import Image
from decord import VideoReader
from decord import cpu
from videomamba_image import videomamba_image_tiny
from videomamba_video import videomamba_tiny
from kinetics_class_index import kinetics_classnames
from imagenet_class_index import imagenet_classnames
from transforms import (
    GroupNormalize, GroupScale, GroupCenterCrop,
    Stack, ToTorchFormatTensor
)

import gradio as gr
from huggingface_hub import hf_hub_download


# Device on which to run the model
# Set to cuda to load on GPU
device = "cuda"
model_video_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_k400_f16_res224.pth")
model_image_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_in1k_res224.pth")
# Pick a pretrained model
model_video = videomamba_tiny(num_classes=400, num_frames=16)
video_sd = torch.load(model_video_path, map_location='cpu')
model_video.load_state_dict(video_sd)
model_image = videomamba_image_tiny()
image_sd = torch.load(model_image_path, map_location='cpu')
model_image.load_state_dict(image_sd['model'])
# Set to eval mode and move to desired device
model_video = model_video.to(device).eval()
model_image = model_image.to(device).eval()

# Create an id to label name mapping
kinetics_id_to_classname = {}
for k, v in kinetics_classnames.items():
    kinetics_id_to_classname[k] = v
imagenet_id_to_classname = {}
for k, v in imagenet_classnames.items():
    imagenet_id_to_classname[k] = v[1]


def get_index(num_frames, num_segments=8):
    seg_size = float(num_frames - 1) / num_segments
    start = int(seg_size / 2)
    offsets = np.array([
        start + int(np.round(seg_size * idx)) for idx in range(num_segments)
    ])
    return offsets


def load_video(video_path):
    vr = VideoReader(video_path, ctx=cpu(0))
    num_frames = len(vr)
    frame_indices = get_index(num_frames, 16)

    # transform
    crop_size = 224
    scale_size = 224
    input_mean = [0.485, 0.456, 0.406]
    input_std = [0.229, 0.224, 0.225]

    transform = T.Compose([
        GroupScale(int(scale_size)),
        GroupCenterCrop(crop_size),
        Stack(),
        ToTorchFormatTensor(),
        GroupNormalize(input_mean, input_std)
    ])

    images_group = list()
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy())
        images_group.append(img)
    torch_imgs = transform(images_group)
    return torch_imgs


@spaces.GPU
def inference_video(video):
    os.system('nvidia-smi')
    vid = load_video(video)

    # The model expects inputs of shape: B x C x H x W
    TC, H, W = vid.shape
    inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4)

    with torch.no_grad():
        prediction = model_video(inputs.to(device))
        prediction = F.softmax(prediction, dim=1).flatten()

    return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}


@spaces.GPU
def inference_image(img):
    image = img
    image_transform = T.Compose(
    [
        T.Resize(224),
        T.CenterCrop(224),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ]
    )
    image = image_transform(image)

    # The model expects inputs of shape: B x C x H x W
    image = image.unsqueeze(0)

    with torch.no_grad():
        prediction = model_image(image.to(device))
        prediction = F.softmax(prediction, dim=1).flatten()

    return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}


demo = gr.Blocks()
with demo:
    gr.Markdown(
        """
        # VideoMamba-Ti
        Gradio demo for <a href='https://github.com/OpenGVLab/VideoMamba' target='_blank'>VideoMamba</a>: To use it, simply upload your video, or click one of the examples to load them. Read more at the links below.
        """
    )

    # with gr.Tab("Video"):
    #     # with gr.Box():
    with gr.Row():
        with gr.Column():
            with gr.Row():
                input_video = gr.Video(label='Input Video', height=360)
            with gr.Row():
                submit_video_button = gr.Button('Submit')
        with gr.Column():
                label_video = gr.Label(num_top_classes=5)
        # with gr.Row():
        #     gr.Examples(examples=['./videos/hitting_baseball.mp4', './videos/hoverboarding.mp4', './videos/yoga.mp4'], inputs=input_video, outputs=label_video, fn=inference_video, cache_examples=True)

    # with gr.Tab("Image"):
    #     # with gr.Box():
    #     with gr.Row():
    #         with gr.Column():
    #             with gr.Row():
    #                 input_image = gr.Image(label='Input Image', type='pil', height=360)
    #             with gr.Row():
    #                 submit_image_button = gr.Button('Submit')
    #         with gr.Column():
    #             label_image = gr.Label(num_top_classes=5)
        # with gr.Row():
        #     gr.Examples(examples=['./images/cat.png', './images/dog.png', './images/panda.png'], inputs=input_image, outputs=label_image, fn=inference_image, cache_examples=True)

    gr.Markdown(
        """
        <p style='text-align: center'><a href='https://arxiv.org/abs/2403.06977' target='_blank'>VideoMamba: State Space Model for Efficient Video Understanding</a> | <a href='https://github.com/OpenGVLab/VideoMamba' target='_blank'>Github Repo</a></p>
        """
    )

    submit_video_button.click(fn=inference_video, inputs=input_video, outputs=label_video)
    # submit_image_button.click(fn=inference_image, inputs=input_image, outputs=label_image)

demo.queue(max_size=20).launch()