Update app.py
Browse files
app.py
CHANGED
@@ -108,7 +108,20 @@ def inference_video(video):
|
|
108 |
prediction = F.softmax(prediction, dim=1).flatten()
|
109 |
|
110 |
return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
@spaces.GPU
|
114 |
def inference_image(img):
|
|
|
108 |
prediction = F.softmax(prediction, dim=1).flatten()
|
109 |
|
110 |
return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
|
111 |
+
@spaces.GPU
|
112 |
+
def ultra_inference_video(vid):
|
113 |
+
os.system('nvidia-smi')
|
114 |
+
# vid = load_video(video)
|
115 |
+
|
116 |
+
# The model expects inputs of shape: B x C x H x W
|
117 |
+
TC, H, W = vid.shape
|
118 |
+
inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4)
|
119 |
|
120 |
+
with torch.no_grad():
|
121 |
+
prediction = model_video(inputs.to(device))
|
122 |
+
prediction = F.softmax(prediction, dim=1).flatten()
|
123 |
+
|
124 |
+
return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
|
125 |
|
126 |
@spaces.GPU
|
127 |
def inference_image(img):
|