import shlex import os import subprocess import spaces import torch import torch torch.jit.script = lambda f: f # install packages for mamba def install(): print("Install personal packages", flush=True) subprocess.run(shlex.split("pip install causal_conv1d-1.0.0-cp310-cp310-linux_x86_64.whl")) subprocess.run(shlex.split("pip install mamba_ssm-1.0.1-cp310-cp310-linux_x86_64.whl")) install() import torch.nn as nn import numpy as np import torch.nn.functional as F import torchvision.transforms as T from PIL import Image from decord import VideoReader from decord import cpu from videomamba_image import videomamba_image_tiny from videomamba_video import videomamba_middle from kinetics_class_index import kinetics_classnames from imagenet_class_index import imagenet_classnames from transforms import ( GroupNormalize, GroupScale, GroupCenterCrop, Stack, ToTorchFormatTensor ) import gradio as gr from huggingface_hub import hf_hub_download # Device on which to run the model # Set to cuda to load on GPU device = "cpu" model_video_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_m16_k400_f16_res224.pth") model_image_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_in1k_res224.pth") # Pick a pretrained model model_video = videomamba_middle(num_classes=400, num_frames=16) video_sd = torch.load(model_video_path, map_location='cpu') model_video.load_state_dict(video_sd) model_image = videomamba_image_tiny() image_sd = torch.load(model_image_path, map_location='cpu') model_image.load_state_dict(image_sd['model']) # Set to eval mode and move to desired device model_video = model_video.to(device).eval() model_image = model_image.to(device).eval() # Create an id to label name mapping kinetics_id_to_classname = {} for k, v in kinetics_classnames.items(): kinetics_id_to_classname[k] = v imagenet_id_to_classname = {} for k, v in imagenet_classnames.items(): imagenet_id_to_classname[k] = v[1] def get_index(num_frames, num_segments=8): seg_size = float(num_frames - 1) / num_segments start = int(seg_size / 2) offsets = np.array([ start + int(np.round(seg_size * idx)) for idx in range(num_segments) ]) return offsets def load_video(video_path): vr = VideoReader(video_path, ctx=cpu(0)) num_frames = len(vr) frame_indices = get_index(num_frames, 16) # transform crop_size = 224 scale_size = 224 input_mean = [0.485, 0.456, 0.406] input_std = [0.229, 0.224, 0.225] transform = T.Compose([ GroupScale(int(scale_size)), GroupCenterCrop(crop_size), Stack(), ToTorchFormatTensor(), GroupNormalize(input_mean, input_std) ]) images_group = list() for frame_index in frame_indices: img = Image.fromarray(vr[frame_index].asnumpy()) images_group.append(img) torch_imgs = transform(images_group) return torch_imgs @spaces.GPU def inference_video(video): os.system('nvidia-smi') vid = load_video(video) # The model expects inputs of shape: B x C x H x W TC, H, W = vid.shape inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4) with torch.no_grad(): prediction = model_video(inputs.to(device)) prediction = F.softmax(prediction, dim=1).flatten() return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)} @spaces.GPU def ultra_inference_video(vid): os.system('nvidia-smi') # vid = load_video(video) # The model expects inputs of shape: B x C x H x W TC, H, W = vid.shape inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4) with torch.no_grad(): prediction = model_video(inputs.to(device)) prediction = F.softmax(prediction, dim=1).flatten() return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)} @spaces.GPU def inference_image(img): image = img image_transform = T.Compose( [ T.Resize(224), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) image = image_transform(image) # The model expects inputs of shape: B x C x H x W image = image.unsqueeze(0) with torch.no_grad(): prediction = model_image(image.to(device)) prediction = F.softmax(prediction, dim=1).flatten() return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)} demo = gr.Interface( fn = ultra_inference_video, inputs = "sketchpad", outputs = "label", ) # demo = gr.Blocks() # with demo: # gr.Markdown( # """ # # VideoMamba-Ti # Gradio demo for VideoMamba: To use it, simply upload your video, or click one of the examples to load them. Read more at the links below. # """ # ) # # with gr.Tab("Video"): # # # with gr.Box(): # with gr.Row(): # with gr.Column(): # with gr.Row(): # input_video = gr.Video(label='Input Video', height=360) # # input_video = load_video(input_video) # with gr.Row(): # submit_video_button = gr.Button('Submit') # with gr.Column(): # label_video = gr.Label(num_top_classes=5) # with gr.Row(): # gr.Examples(examples=['./videos/hitting_baseball.mp4', './videos/hoverboarding.mp4', './videos/yoga.mp4'], inputs=input_video, outputs=label_video, fn=inference_video, cache_examples=True) # # with gr.Tab("Image"): # # # with gr.Box(): # # with gr.Row(): # # with gr.Column(): # # with gr.Row(): # # input_image = gr.Image(label='Input Image', type='pil', height=360) # # with gr.Row(): # # submit_image_button = gr.Button('Submit') # # with gr.Column(): # # label_image = gr.Label(num_top_classes=5) # # with gr.Row(): # # gr.Examples(examples=['./images/cat.png', './images/dog.png', './images/panda.png'], inputs=input_image, outputs=label_image, fn=inference_image, cache_examples=True) # gr.Markdown( # """ #
VideoMamba: State Space Model for Efficient Video Understanding | Github Repo
# """ # ) # submit_video_button.click(fn=inference_video, inputs=input_video, outputs=label_video) # # submit_image_button.click(fn=inference_image, inputs=input_image, outputs=label_image) demo.launch()