Spaces:
Sleeping
Sleeping
from datasets import Dataset | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, DataCollatorForSeq2Seq, Seq2SeqTrainer, TrainingArguments | |
from youtube_transcript_api import YouTubeTranscriptApi | |
from deepmultilingualpunctuation import PunctuationModel | |
from googletrans import Translator | |
import time | |
import torch | |
import re | |
def load_model(cp): | |
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base") | |
model = AutoModelForSeq2SeqLM.from_pretrained(cp) | |
return tokenizer, model | |
def summarize(text, model, tokenizer, num_beams=4, device='cpu'): | |
model.to(device) | |
inputs = tokenizer.encode(text, return_tensors="pt", max_length=1024, truncation=True, padding = True).to(device) | |
with torch.no_grad(): | |
summary_ids = model.generate(inputs, max_length=256, num_beams=num_beams) | |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
return summary | |
def processed(text): | |
processed_text = text.replace('\n', ' ') | |
processed_text = processed_text.lower() | |
return processed_text | |
def get_subtitles(video_url): | |
try: | |
video_id = video_url.split("v=")[1] | |
transcript = YouTubeTranscriptApi.get_transcript(video_id, languages=['en']) | |
subs = " ".join(entry['text'] for entry in transcript) | |
print(subs) | |
return transcript, subs | |
except Exception as e: | |
return [], f"An error occurred: {e}" | |
def restore_punctuation(text): | |
model = PunctuationModel() | |
result = model.restore_punctuation(text) | |
return result | |
def translate_long(text, language='vi'): | |
translator = Translator() | |
limit = 4700 | |
chunks = [] | |
current_chunk = '' | |
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text) | |
for sentence in sentences: | |
if len(current_chunk) + len(sentence) <= limit: | |
current_chunk += sentence.strip() + ' ' | |
else: | |
chunks.append(current_chunk.strip()) | |
current_chunk = sentence.strip() + ' ' | |
if current_chunk: | |
chunks.append(current_chunk.strip()) | |
translated_text = '' | |
for chunk in chunks: | |
try: | |
time.sleep(1) | |
translation = translator.translate(chunk, dest=language) | |
translated_text += translation.text + ' ' | |
except Exception as e: | |
translated_text += chunk + ' ' | |
return translated_text.strip() | |
def split_into_chunks(text, max_words=800, overlap_sentences=2): | |
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text) | |
chunks = [] | |
current_chunk = [] | |
current_word_count = 0 | |
for sentence in sentences: | |
word_count = len(sentence.split()) | |
if current_word_count + word_count <= max_words: | |
current_chunk.append(sentence) | |
current_word_count += word_count | |
else: | |
if len(current_chunk) >= overlap_sentences: | |
overlap = current_chunk[-overlap_sentences:] | |
chunks.append(' '.join(current_chunk)) | |
current_chunk = current_chunk[-overlap_sentences:] + [sentence] | |
current_word_count = sum(len(sent.split()) for sent in current_chunk) | |
if current_chunk: | |
if len(current_chunk) >= overlap_sentences: | |
overlap = current_chunk[-overlap_sentences:] | |
chunks.append(' '.join(current_chunk)) | |
return chunks | |
def post_processing(text): | |
sentences = re.split(r'(?<=[.!?])\s*', text) | |
for i in range(len(sentences)): | |
if sentences[i]: | |
sentences[i] = sentences[i][0].upper() + sentences[i][1:] | |
text = " ".join(sentences) | |
return text | |
def display(text): | |
sentences = re.split(r'(?<=[.!?])\s*', text) | |
unique_sentences = list(dict.fromkeys(sentences[:-1])) | |
formatted_sentences = [f"• {sentence}" for sentence in unique_sentences] | |
return formatted_sentences | |
def pipeline(url, model, tokenizer): | |
trans, sub = get_subtitles(url) | |
sub = restore_punctuation(sub) | |
vie_sub = translate_long(sub) | |
vie_sub = processed(vie_sub) | |
chunks = split_into_chunks(vie_sub, 700, 2) | |
sum_para = [] | |
for i in chunks: | |
tmp = summarize(i, model, tokenizer, num_beams=3) | |
sum_para.append(tmp) | |
sum = ''.join(sum_para) | |
del sub, vie_sub, sum_para, chunks | |
sum = post_processing(sum) | |
re = display(sum) | |
return re |