miracle01 commited on
Commit
f0206d1
·
verified ·
1 Parent(s): ec4a226

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -5
app.py CHANGED
@@ -5,6 +5,27 @@ import io
5
  import numpy as np
6
  from streamlit_option_menu import option_menu
7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  def load_image():
9
  uploaded_file = st.file_uploader(label='Pick an image to test')
10
  if uploaded_file is not None:
@@ -42,7 +63,7 @@ def main():
42
  with st.sidebar:
43
  selected = option_menu(
44
  menu_title="Main Menu",
45
- options=["About", "Extensive Classifier", "Local Classifier", "Project Details"],
46
  icons=["info-circle", "camera", "search", "clipboard-list"],
47
  menu_icon="cast",
48
  default_index=0,
@@ -61,8 +82,8 @@ def main():
61
  400L
62
  """)
63
 
64
- elif selected == "Extensive Classifier":
65
- st.title('Extensive Classifier')
66
  st.write("This is a demo of an image classification model trained on the Oxford Flower Dataset.")
67
  st.write("To test the model, upload an image of a flower and click the 'Run on image' button.")
68
 
@@ -77,8 +98,8 @@ def main():
77
  st.markdown(f'<h4 style="color:blue;">Flower Type: <span style="color:black;">{flower}</span></h4>', unsafe_allow_html=True)
78
  st.markdown(f'<h4 style="color:green;">Closeness: <span style="color:black;">{closeness}%</span></h4>', unsafe_allow_html=True)
79
 
80
- elif selected == "Local Classifier":
81
- st.title('Local Classifier')
82
  st.write("This section will contain extensive classifier details and options.")
83
  # Add your extensive classifier code here
84
 
 
5
  import numpy as np
6
  from streamlit_option_menu import option_menu
7
 
8
+ # Function to add a background image
9
+ def add_bg_from_local(image_path):
10
+ with open(image_path, "rb") as image_file:
11
+ encoded_string = base64.b64encode(image_file.read())
12
+ st.markdown(
13
+ f"""
14
+ <style>
15
+ .stApp {{
16
+ background-image: url("data:image/{"png"};base64,{encoded_string.decode()}");
17
+ background-size: cover;
18
+ background-repeat: no-repeat;
19
+ background-attachment: fixed;
20
+ }}
21
+ </style>
22
+ """,
23
+ unsafe_allow_html=True
24
+ )
25
+
26
+ # Add background image
27
+ add_bg_from_local('flower.png')
28
+
29
  def load_image():
30
  uploaded_file = st.file_uploader(label='Pick an image to test')
31
  if uploaded_file is not None:
 
63
  with st.sidebar:
64
  selected = option_menu(
65
  menu_title="Main Menu",
66
+ options=["About", "Local Classifier", "Extensive Classifier", "Project Details"],
67
  icons=["info-circle", "camera", "search", "clipboard-list"],
68
  menu_icon="cast",
69
  default_index=0,
 
82
  400L
83
  """)
84
 
85
+ elif selected == "Local Classifier":
86
+ st.title('Local Classifier')
87
  st.write("This is a demo of an image classification model trained on the Oxford Flower Dataset.")
88
  st.write("To test the model, upload an image of a flower and click the 'Run on image' button.")
89
 
 
98
  st.markdown(f'<h4 style="color:blue;">Flower Type: <span style="color:black;">{flower}</span></h4>', unsafe_allow_html=True)
99
  st.markdown(f'<h4 style="color:green;">Closeness: <span style="color:black;">{closeness}%</span></h4>', unsafe_allow_html=True)
100
 
101
+ elif selected == "Extensive Classifier":
102
+ st.title('Extensive Classifier')
103
  st.write("This section will contain extensive classifier details and options.")
104
  # Add your extensive classifier code here
105