Spaces:
Sleeping
Sleeping
File size: 10,376 Bytes
43b69a7 683ee80 43b69a7 d679073 683ee80 d679073 43b69a7 683ee80 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 0b114c6 43b69a7 d679073 43b69a7 683ee80 43b69a7 683ee80 43b69a7 683ee80 43b69a7 683ee80 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 683ee80 43b69a7 683ee80 43b69a7 683ee80 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 43b69a7 d679073 28e8e5e d679073 28e8e5e d679073 43b69a7 d679073 982b730 a8154a6 d679073 43b69a7 d679073 4da24a2 43b69a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
import os
import srtm
elevation_data = srtm.get_data()
import json
import geopy
from geopy import distance
from beaufort_scale.beaufort_scale import beaufort_scale_kmh
import requests
import requests_cache
import openmeteo_requests
from retry_requests import retry
from dash import Dash, dcc, html, Input, Output, callback, no_update
from dash_extensions import Purify
import plotly.graph_objects as go
### UPDATE PEAK LIST ###
lat = 49.610755
lon = 6.13268
ele = 310
dist = 100
overpass_url = 'https://overpass.private.coffee/api/interpreter'
def add_ele(row):
if str(int(round(row['altitude'], 0))).isnumeric():
row['altitude'] = row['altitude']
else:
row['altitude'] = elevation_data.get_elevation(row['latitude'], row['longitude'], 0)
return row
def eukarney(lat1, lon1):
p1 = (lat1, lon1)
p2 = (lat, lon)
karney = distance.distance(p1, p2).m
return karney
def compute_bbox(lat, lon, dist):
bearings = [225, 45]
origin = geopy.Point(lat, lon)
l = []
for bearing in bearings:
destination = distance.distance(dist).destination(origin, bearing)
coords = destination.latitude, destination.longitude
l.extend(coords)
return l
bbox = compute_bbox(lat, lon, dist)
bbox = ','.join(str(x) for x in compute_bbox(lat, lon, dist))
peak_list = 'peak_list.csv'
def update_peaks():
overpass_query = '[out:json];(nwr[natural=peak](' + bbox + ');nwr[natural=hill](' + bbox + '););out body;'
response = requests.get(overpass_url, params={'data': overpass_query})
response = response.json()
peak_dict = {'name': [], 'latitude': [], 'longitude': [], 'altitude': []}
for e in response['elements']:
peak_dict['latitude'].append(float(e['lat']))
peak_dict['longitude'].append(float(e['lon']))
if 'name' in e['tags'].keys():
peak_dict['name'].append(e['tags']['name'])
else:
peak_dict['name'].append('Unnamed hill')
if 'ele' in e['tags'].keys():
peak_dict['altitude'].append(float(e['tags']['ele']))
else:
peak_dict['altitude'].append(elevation_data.get_elevation(e['lat'], e['lon'], 0))
df = pd.DataFrame.from_dict(peak_dict)
df = df.apply(lambda x: add_ele(x), axis=1)
df['distances'] = df.apply(lambda x: eukarney(x['latitude'], x['longitude']), axis=1).fillna(0)
df['altitude'] = df['altitude'].round(0).astype(int)
df.to_csv(peak_list, index=False)
return df
### WEATHER FORECAST ###
cache_session = requests_cache.CachedSession('.cache', expire_after = 3600)
retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2)
openmeteo = openmeteo_requests.Client(session = retry_session)
# Open Meteo weather forecast API
url = 'https://api.open-meteo.com/v1/forecast'
params = {
'timezone': 'auto',
'hourly': ['temperature_2m', 'is_day', 'rain', 'weather_code', 'wind_speed_10m', 'snow_depth']
}
# Load the JSON files mapping weather codes to descriptions and icons
with open('weather_icons_custom.json', 'r') as file:
icons = json.load(file)
# Weather icons URL
icon_url = 'https://raw.githubusercontent.com/basmilius/weather-icons/refs/heads/dev/production/fill/svg/'
def map_icons(df):
code = df['weather_code']
if df['is_day'] == 1:
icon = icons[str(code)]['day']['icon']
description = icons[str(code)]['day']['description']
elif df['is_day'] == 0:
icon = icons[str(code)]['night']['icon']
description = icons[str(code)]['night']['description']
df['Weather'] = icon_url + icon
df['Weather outline'] = description
return df
# Quantitative pluviometry to natural language
def rain_intensity(precipt):
if precipt >= 50:
rain = 'Extreme rain'
elif 50 < precipt <= 16:
rain = 'Very heavy rain'
elif 4 <= precipt < 16:
rain = 'Heavy rain'
elif 1 <= precipt < 4:
rain = 'Moderate rain'
elif 0.25 <= precipt < 1:
rain = 'Light rain'
elif 0 < precipt < 0.25:
rain = 'Light drizzle'
else:
rain = 'No rain / No info'
return rain
# Obtain the weather forecast for each waypoint at each specific time
def get_weather(df):
params['latitude'] = df['latitude']
params['longitude'] = df['longitude']
params['elevation'] = df['altitude']
now = datetime.now()
start_period = (now - timedelta(seconds=3600)).strftime('%Y-%m-%dT%H:%M')
end_period = now.strftime('%Y-%m-%dT%H:%M')
params['start_hour'] = start_period
params['end_hour'] = end_period
responses = openmeteo.weather_api(url, params=params)
# Process first location. Add a for-loop for multiple locations or weather models
response = responses[0]
# Process hourly data. The order of variables needs to be the same as requested.
# currently = response.Current()
hourly = response.Hourly()
minutely_temperature_2m = hourly.Variables(0).ValuesAsNumpy()[0]
is_day = hourly.Variables(1).ValuesAsNumpy()[0]
rain = hourly.Variables(2).ValuesAsNumpy()[0]
weather_code = hourly.Variables(3).ValuesAsNumpy()[0]
minutely_wind_speed_10m = hourly.Variables(4).ValuesAsNumpy()[0]
snow_depth = hourly.Variables(5).ValuesAsNumpy()[0]
df['Temp (°C)'] = minutely_temperature_2m
df['weather_code'] = weather_code
df['is_day'] = is_day
v_rain_intensity = np.vectorize(rain_intensity)
df['Rain level'] = v_rain_intensity(rain)
v_beaufort_scale_kmh = np.vectorize(beaufort_scale_kmh)
df['Wind level'] = v_beaufort_scale_kmh(minutely_wind_speed_10m, language='en')
df['Rain (mm/h)'] = rain
df['Wind (km/h)'] = minutely_wind_speed_10m
df['Snow depth (cm)'] = (snow_depth * 100).round(1)
return df
def format_peaks():
if not os.path.isfile(peak_list):
update_peaks()
today = datetime.today()
modified_date = datetime.fromtimestamp(os.path.getmtime(peak_list))
peak_age = today - modified_date
if peak_age.days > 30:
update_peaks()
df = pd.read_csv(peak_list)
df = df[df['altitude']>=df['altitude'].quantile(3/4)].copy()
df = df.sort_values(by='distances',ascending=True).reset_index(drop=True)
df = df.head(600).copy()
df = df.apply(lambda x: get_weather(x), axis=1)
df['Temp (°C)'] = df['Temp (°C)'].round(0).astype(int).astype(str) + '°C'
df['Wind (km/h)'] = df['Wind (km/h)'].round(1).astype(str).replace('0.0', '')
df['Rain (mm/h)'] = df['Rain (mm/h)'].round(1).astype(str).replace('0.0', '')
df['distances'] = (df['distances'] / 1000).round(1).astype(str) + ' km'
df['Snow depth (cm)'] = df['Snow depth (cm)'].astype(str) + ' cm'
df['altitude'] = df['altitude'].astype(str) + ' m'
df['is_day'] = df['is_day'].astype(int)
df['weather_code'] = df['weather_code'].astype(int)
df = df.apply(map_icons, axis=1)
df['Rain level'] = df['Rain level'].astype(str)
df['Wind level'] = df['Wind level'].astype(str)
df = df.rename(columns={'distances': 'Distance (km)'})
df['dist_read'] = ('<p style="font-family:sans; font-size:12px;">' +
df['name'] + '<br>' +
df['altitude'] + ' | ' + df['Distance (km)'] + '<br><br>' +
'Snow: ' + df['Snow depth (cm)'] + '<br><br>' +
'<b>' + df['Weather outline'] + '</b><br><br>' +
df['Temp (°C)'] + '<br><br>' +
df['Rain level'] + '<br>' +
df['Wind level'])
df = df[(df['Snow depth (cm)'] != '0.0 cm') | (df['Weather outline'].str.lower().str.contains('snow'))].copy()
return df
def snow_color(row):
if row['Snow depth (cm)'] == '0.0 cm':
row['snow_colour'] = 'goldenrod'
else:
row['snow_colour'] = 'aqua'
return row
def plot_fig():
global df
lat_centre = 49.8464
lon_centre = 6.0992
df = format_peaks()
df['snow_colour'] = ''
df = df.apply(lambda row: snow_color(row), axis=1)
fig = go.Figure()
fig.add_trace(go.Scattermap(lon=df['longitude'],
lat=df['latitude'],
mode='markers', marker=dict(size=24, color=df['snow_colour'], opacity=0.8, symbol='circle'),
name='circles'))
fig.add_trace(go.Scattermap(lon=df['longitude'],
lat=df['latitude'],
mode='markers', marker=dict(size=8, opacity=1, symbol='mountain'),
name='peaks'))
fig.update_layout(map_style='open-street-map',
map=dict(center=dict(lat=lat_centre, lon=lon_centre), zoom=8))
fig.update_traces(showlegend=False, hoverinfo='none', hovertemplate=None, selector=({'name': 'circles'}))
fig.update_traces(showlegend=False, hoverinfo='none', hovertemplate=None, selector=({'name': 'peaks'}))
return fig
app = Dash(__name__)
server = app.server
fig = plot_fig()
def serve_layout():
layout = html.Div([
html.Div([dcc.Graph(id='base-figure', figure=fig, clear_on_unhover=True, style={'height': '99vh'})], id='base-figure-div'),
dcc.Tooltip(id='figure-tooltip'),
dcc.Interval(
id='interval-component',
interval=60 * 60 * 1000,
n_intervals=0),
], id='layout-content')
return layout
app.layout = serve_layout
@callback(Output('layout-content', 'children'),
Output('base-figure', 'figure'),
Input('interval-component', 'n_intervals'))
def refresh_layout(n):
global fig
fig = plot_fig()
layout = serve_layout()
return fig, layout
@callback(Output('figure-tooltip', 'show'),
Output('figure-tooltip', 'bbox'),
Output('figure-tooltip', 'children'),
Input('base-figure', 'hoverData'))
def display_hover(hoverData):
if hoverData is None:
return False, no_update, no_update
pt = hoverData['points'][0]
bbox = pt['bbox']
num = pt['pointNumber']
df_row = df.iloc[num].copy()
img_src = df_row['Weather']
txt_src = df_row['dist_read']
children = [html.Div([html.Img(src=img_src, style={'width': '100%'}), Purify(txt_src),],
style={'width': '96px', 'white-space': 'normal'})]
return True, bbox, children
if __name__ == '__main__':
app.run(debug=False, host='0.0.0.0', port=7860)
|