File size: 10,376 Bytes
43b69a7
683ee80
43b69a7
 
d679073
683ee80
 
d679073
43b69a7
 
 
 
 
 
683ee80
 
 
d679073
43b69a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d679073
43b69a7
 
 
 
 
 
 
 
 
 
 
 
d679073
 
43b69a7
 
 
 
 
 
 
 
 
 
 
 
 
 
d679073
 
 
 
 
 
 
 
43b69a7
d679073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43b69a7
d679073
43b69a7
 
 
d679073
43b69a7
d679073
43b69a7
 
d679073
43b69a7
 
d679073
 
 
 
 
 
 
43b69a7
d679073
 
43b69a7
 
 
 
 
 
d679073
43b69a7
 
 
d679073
 
43b69a7
d679073
 
 
43b69a7
d679073
43b69a7
 
d679073
43b69a7
d679073
43b69a7
d679073
 
43b69a7
d679073
43b69a7
 
d679073
43b69a7
 
 
d679073
43b69a7
 
d679073
43b69a7
 
 
 
d679073
43b69a7
0b114c6
43b69a7
 
 
 
 
 
 
d679073
43b69a7
 
683ee80
43b69a7
 
683ee80
43b69a7
683ee80
43b69a7
 
 
 
 
 
 
 
683ee80
43b69a7
d679073
43b69a7
d679073
43b69a7
 
 
 
 
 
d679073
43b69a7
d679073
43b69a7
d679073
43b69a7
 
683ee80
43b69a7
683ee80
43b69a7
683ee80
43b69a7
d679073
 
 
43b69a7
 
 
 
d679073
43b69a7
 
 
 
d679073
 
43b69a7
d679073
43b69a7
 
d679073
 
 
43b69a7
d679073
 
28e8e5e
 
d679073
 
 
28e8e5e
d679073
 
43b69a7
 
 
d679073
 
 
 
982b730
 
a8154a6
 
 
 
 
 
 
 
 
 
d679073
 
 
 
 
 
 
 
 
 
 
 
 
43b69a7
d679073
 
 
 
 
 
 
 
 
4da24a2
43b69a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
from datetime import datetime, timedelta
import pandas as pd
import numpy as np
import os

import srtm
elevation_data = srtm.get_data()

import json
import geopy
from geopy import distance
from beaufort_scale.beaufort_scale import beaufort_scale_kmh

import requests
import requests_cache
import openmeteo_requests
from retry_requests import retry

from dash import Dash, dcc, html, Input, Output, callback, no_update
from dash_extensions import Purify
import plotly.graph_objects as go

### UPDATE PEAK LIST ###

lat = 49.610755
lon = 6.13268
ele = 310
dist = 100

overpass_url = 'https://overpass.private.coffee/api/interpreter'

def add_ele(row):
    if str(int(round(row['altitude'], 0))).isnumeric():
        row['altitude'] = row['altitude']
    else:
        row['altitude'] = elevation_data.get_elevation(row['latitude'], row['longitude'], 0)
    return row

def eukarney(lat1, lon1):
    p1 = (lat1, lon1)
    p2 = (lat, lon)
    karney = distance.distance(p1, p2).m
    return karney

def compute_bbox(lat, lon, dist):
    bearings = [225, 45]
    origin = geopy.Point(lat, lon)
    l = []

    for bearing in bearings:
        destination = distance.distance(dist).destination(origin, bearing)
        coords = destination.latitude, destination.longitude
        l.extend(coords)
    return l

bbox = compute_bbox(lat, lon, dist)
bbox = ','.join(str(x) for x in compute_bbox(lat, lon, dist))

peak_list = 'peak_list.csv'

def update_peaks():

    overpass_query = '[out:json];(nwr[natural=peak](' + bbox + ');nwr[natural=hill](' + bbox + '););out body;'

    response = requests.get(overpass_url, params={'data': overpass_query})

    response = response.json()

    peak_dict = {'name': [], 'latitude': [], 'longitude': [], 'altitude': []}
    for e in response['elements']:
        peak_dict['latitude'].append(float(e['lat']))
        peak_dict['longitude'].append(float(e['lon']))
        if 'name' in e['tags'].keys():
            peak_dict['name'].append(e['tags']['name'])
        else:
            peak_dict['name'].append('Unnamed hill')
        if 'ele' in e['tags'].keys():
            peak_dict['altitude'].append(float(e['tags']['ele']))
        else:
            peak_dict['altitude'].append(elevation_data.get_elevation(e['lat'], e['lon'], 0))


    df = pd.DataFrame.from_dict(peak_dict)

    df = df.apply(lambda x: add_ele(x), axis=1)

    df['distances'] = df.apply(lambda x: eukarney(x['latitude'], x['longitude']), axis=1).fillna(0)

    df['altitude'] = df['altitude'].round(0).astype(int)

    df.to_csv(peak_list, index=False)

    return df

### WEATHER FORECAST ###

cache_session = requests_cache.CachedSession('.cache', expire_after = 3600)
retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2)
openmeteo = openmeteo_requests.Client(session = retry_session)

# Open Meteo weather forecast API
url = 'https://api.open-meteo.com/v1/forecast'
params = {
	'timezone': 'auto',
	'hourly': ['temperature_2m', 'is_day', 'rain', 'weather_code', 'wind_speed_10m', 'snow_depth']
}

# Load the JSON files mapping weather codes to descriptions and icons
with open('weather_icons_custom.json', 'r') as file:
	icons = json.load(file)

# Weather icons URL
icon_url = 'https://raw.githubusercontent.com/basmilius/weather-icons/refs/heads/dev/production/fill/svg/'

def map_icons(df):
	code = df['weather_code']

	if df['is_day'] == 1:
		icon = icons[str(code)]['day']['icon']
		description = icons[str(code)]['day']['description']
	elif df['is_day'] == 0:
		icon = icons[str(code)]['night']['icon']
		description = icons[str(code)]['night']['description']

	df['Weather'] = icon_url + icon
	df['Weather outline'] = description

	return df

# Quantitative pluviometry to natural language
def rain_intensity(precipt):
    if precipt >= 50:
        rain = 'Extreme rain'
    elif 50  < precipt <= 16:
        rain = 'Very heavy rain'
    elif 4  <= precipt < 16:
        rain = 'Heavy rain'
    elif 1  <= precipt < 4:
        rain = 'Moderate rain'
    elif 0.25  <= precipt < 1:
        rain = 'Light rain'
    elif 0 < precipt < 0.25:
        rain = 'Light drizzle'
    else:
        rain = 'No rain / No info'
    return rain

# Obtain the weather forecast for each waypoint at each specific time
def get_weather(df):

    params['latitude'] = df['latitude']
    params['longitude'] = df['longitude']
    params['elevation'] = df['altitude']

    now = datetime.now()

    start_period = (now - timedelta(seconds=3600)).strftime('%Y-%m-%dT%H:%M')
    end_period = now.strftime('%Y-%m-%dT%H:%M')

    params['start_hour'] = start_period
    params['end_hour'] = end_period

    responses = openmeteo.weather_api(url, params=params)

    # Process first location. Add a for-loop for multiple locations or weather models
    response = responses[0]

    # Process hourly data. The order of variables needs to be the same as requested.
    # currently = response.Current()
    hourly = response.Hourly()

    minutely_temperature_2m = hourly.Variables(0).ValuesAsNumpy()[0]
    is_day = hourly.Variables(1).ValuesAsNumpy()[0]
    rain = hourly.Variables(2).ValuesAsNumpy()[0]
    weather_code = hourly.Variables(3).ValuesAsNumpy()[0]
    minutely_wind_speed_10m = hourly.Variables(4).ValuesAsNumpy()[0]
    snow_depth = hourly.Variables(5).ValuesAsNumpy()[0]

    df['Temp (°C)'] = minutely_temperature_2m
    df['weather_code'] = weather_code
    df['is_day'] = is_day

    v_rain_intensity = np.vectorize(rain_intensity)
    df['Rain level'] = v_rain_intensity(rain)

    v_beaufort_scale_kmh = np.vectorize(beaufort_scale_kmh)

    df['Wind level'] = v_beaufort_scale_kmh(minutely_wind_speed_10m, language='en')

    df['Rain (mm/h)'] = rain
    df['Wind (km/h)'] = minutely_wind_speed_10m

    df['Snow depth (cm)'] = (snow_depth * 100).round(1)

    return df


def format_peaks():

    if not os.path.isfile(peak_list):
        update_peaks()

    today = datetime.today()
    modified_date = datetime.fromtimestamp(os.path.getmtime(peak_list))
    peak_age = today - modified_date

    if peak_age.days > 30:
        update_peaks()

    df = pd.read_csv(peak_list)
    df = df[df['altitude']>=df['altitude'].quantile(3/4)].copy()
    df = df.sort_values(by='distances',ascending=True).reset_index(drop=True)
    df = df.head(600).copy()

    df = df.apply(lambda x: get_weather(x), axis=1)

    df['Temp (°C)'] = df['Temp (°C)'].round(0).astype(int).astype(str) + '°C'
    df['Wind (km/h)'] = df['Wind (km/h)'].round(1).astype(str).replace('0.0', '')
    df['Rain (mm/h)'] = df['Rain (mm/h)'].round(1).astype(str).replace('0.0', '')
    df['distances'] = (df['distances'] / 1000).round(1).astype(str) + ' km'
    df['Snow depth (cm)'] = df['Snow depth (cm)'].astype(str) + ' cm'
    df['altitude'] = df['altitude'].astype(str) + ' m'
    df['is_day'] = df['is_day'].astype(int)

    df['weather_code'] = df['weather_code'].astype(int)
    df = df.apply(map_icons, axis=1)

    df['Rain level'] = df['Rain level'].astype(str)
    df['Wind level'] = df['Wind level'].astype(str)

    df = df.rename(columns={'distances': 'Distance (km)'})

    df['dist_read'] = ('<p style="font-family:sans; font-size:12px;">' +
                        df['name'] + '<br>' +
                        df['altitude'] + ' | ' + df['Distance (km)'] + '<br><br>' +
                        'Snow: ' + df['Snow depth (cm)'] + '<br><br>' +
                        '<b>' + df['Weather outline'] + '</b><br><br>' +
                        df['Temp (°C)'] + '<br><br>' +
                        df['Rain level'] + '<br>' +
                        df['Wind level'])

    df = df[(df['Snow depth (cm)'] != '0.0 cm') | (df['Weather outline'].str.lower().str.contains('snow'))].copy()

    return df

def snow_color(row):
    if row['Snow depth (cm)'] == '0.0 cm':
        row['snow_colour'] = 'goldenrod'
    else:
        row['snow_colour'] = 'aqua'
    return row

def plot_fig():

    global df

    lat_centre = 49.8464
    lon_centre = 6.0992

    df = format_peaks()

    df['snow_colour'] = ''

    df = df.apply(lambda row: snow_color(row), axis=1)

    fig = go.Figure()

    fig.add_trace(go.Scattermap(lon=df['longitude'],
                    lat=df['latitude'],
                    mode='markers', marker=dict(size=24, color=df['snow_colour'], opacity=0.8, symbol='circle'),
                    name='circles'))

    fig.add_trace(go.Scattermap(lon=df['longitude'],
                    lat=df['latitude'],
                    mode='markers', marker=dict(size=8, opacity=1, symbol='mountain'),
                    name='peaks'))

    fig.update_layout(map_style='open-street-map',
        map=dict(center=dict(lat=lat_centre, lon=lon_centre), zoom=8))

    fig.update_traces(showlegend=False, hoverinfo='none', hovertemplate=None, selector=({'name': 'circles'}))
    fig.update_traces(showlegend=False, hoverinfo='none', hovertemplate=None, selector=({'name': 'peaks'}))

    return fig

app = Dash(__name__)
server = app.server

fig = plot_fig()

def serve_layout():

    layout = html.Div([
        html.Div([dcc.Graph(id='base-figure', figure=fig, clear_on_unhover=True, style={'height': '99vh'})], id='base-figure-div'),
        dcc.Tooltip(id='figure-tooltip'),
        dcc.Interval(
            id='interval-component',
            interval=60 * 60 * 1000,
            n_intervals=0),
    ], id='layout-content')

    return layout

app.layout = serve_layout

@callback(Output('layout-content', 'children'),
        Output('base-figure', 'figure'),
        Input('interval-component', 'n_intervals'))
def refresh_layout(n):
    global fig
    fig = plot_fig()
    layout = serve_layout()
    return fig, layout


@callback(Output('figure-tooltip', 'show'),
    Output('figure-tooltip', 'bbox'),
    Output('figure-tooltip', 'children'),
    Input('base-figure', 'hoverData'))
def display_hover(hoverData):

    if hoverData is None:
        return False, no_update, no_update

    pt = hoverData['points'][0]
    bbox = pt['bbox']
    num = pt['pointNumber']

    df_row = df.iloc[num].copy()
    img_src = df_row['Weather']
    txt_src = df_row['dist_read']

    children = [html.Div([html.Img(src=img_src, style={'width': '100%'}), Purify(txt_src),],
                         style={'width': '96px', 'white-space': 'normal'})]

    return True, bbox, children

if __name__ == '__main__':
    app.run(debug=False, host='0.0.0.0', port=7860)