Spaces:
Runtime error
Runtime error
File size: 13,046 Bytes
1366204 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
# Description: AWS utility functions for Resonate. This file contains the code to parse the AWS Transcribe output.
# Documentation: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/transcribe/client/start_transcription_job.html
import json
import os
import re
import time
import boto3
import dotenv
import pandas as pd
import webvtt
from datetime import datetime
from IPython.display import HTML, display
class resonate_aws_transcribe:
def create_client(
self,
aws_access_key: str,
aws_secret_access_key: str,
aws_region_name: str,
) -> tuple[boto3.client, boto3.client]:
"""
Create and return AWS Transcribe and S3 clients with the specified AWS region.
"""
session = boto3.Session(
aws_access_key_id=aws_access_key,
aws_secret_access_key=aws_secret_access_key,
region_name=aws_region_name,
)
return session.client("transcribe"), session.client("s3")
def create_s3_bucket(
self, s3: boto3.client, bucket_name: str, aws_region_name: str
) -> bool:
"""
Create an S3 bucket using the provided AWS S3 client if it doesn't exist.
"""
try:
s3.create_bucket(
Bucket=bucket_name,
CreateBucketConfiguration={"LocationConstraint": aws_region_name},
)
print(f"S3 bucket '{bucket_name}' created successfully.")
return True
except s3.exceptions.BucketAlreadyExists:
print(f"S3 bucket '{bucket_name}' already exists.")
return True
except Exception as e:
print(f"Error creating S3 bucket '{bucket_name}': {e}")
return False
def upload_to_s3(
self, s3: boto3.client, file_path: str, bucket_name: str, object_name=None
) -> str:
"""
Upload the audio file to S3 bucket using the provided AWS S3 client.
"""
if object_name is None:
object_name = file_path
try:
s3.upload_file(file_path, bucket_name, object_name)
uri = f"s3://{bucket_name}/{object_name}"
print(f"File '{file_path}' uploaded successfully to '{uri}'")
return uri
except Exception as e:
print(
f"Error uploading file '{file_path}' to '{bucket_name}/{object_name}': {e}"
)
return ""
def download_from_s3(
self,
s3: boto3.client,
object_name: str,
bucket_name: str,
local_directory: str,
) -> bool:
"""
Download the .json and .vtt files from an S3 bucket to a local directory.
"""
local_file_json = f"{local_directory}/{object_name}.json"
local_file_vtt = f"{local_directory}/{object_name}.vtt"
try:
s3.download_file(bucket_name, object_name + ".json", local_file_json)
print(f"File '{object_name}' (JSON) downloaded successfully to '{local_file_json}'")
s3.download_file(bucket_name, object_name + ".vtt", local_file_vtt)
print(f"File '{object_name}' (VTT) downloaded successfully to '{local_file_vtt}'")
return True
except Exception as e:
print(f"Error downloading file '{object_name}' from '{bucket_name}': {e}")
return False
def delete_from_s3(
self, s3: boto3.client, bucket_name: str, object_name: str
) -> bool:
"""
Delete the file from an S3 bucket using the provided AWS S3 client.
"""
try:
s3.delete_object(Bucket=bucket_name, Key=object_name)
print(f"File '{object_name}' deleted successfully from '{bucket_name}'")
return True
except Exception as e:
print(f"Error deleting file '{object_name}' from '{bucket_name}': {e}")
return False
def delete_s3_bucket(self, s3: boto3.client, bucket_name: str) -> bool:
"""
Delete a S3 bucket along with its contents using the provided AWS S3 client.
"""
try:
objects = s3.list_objects(Bucket=bucket_name).get("Contents", [])
for obj in objects:
s3.delete_object(Bucket=bucket_name, Key=obj["Key"])
print(
f"Object '{obj['Key']}' deleted successfully from '{bucket_name}'"
)
s3.delete_bucket(Bucket=bucket_name)
print(f"S3 bucket '{bucket_name}' and its contents deleted successfully.")
return True
except Exception as e:
return e
def transcribe_audio(
self,
transcribe_client: boto3.client,
uri: str,
output_bucket: str,
transcribe_job_name: str = "job",
) -> dict:
"""
Start a transcription job for audio stored in an S3 bucket using the AWS Transcribe service.
"""
print("Calling AWS Transcribe Job...")
response = transcribe_client.start_transcription_job(
TranscriptionJobName=transcribe_job_name,
LanguageCode="en-US",
MediaFormat="wav",
Settings={
"ShowSpeakerLabels": True,
"MaxSpeakerLabels": 10,
"ChannelIdentification": False,
},
Media={"MediaFileUri": uri},
Subtitles={"Formats": ["vtt"]},
OutputBucketName=output_bucket,
)
return response
def combine_files(self, file_name: str, local_directory: str) -> pd.DataFrame:
"""
Combines information from a JSON file and a WebVTT file into a CSV file.
"""
json_file_path = f"{local_directory}/{file_name}.json"
with open(json_file_path, "r") as f:
data = json.load(f)
segments = data["results"]["speaker_labels"]["segments"]
df = pd.DataFrame(segments)
df["start_time"] = df["start_time"].astype(float) / 60
df["end_time"] = df["end_time"].astype(float) / 60
df = df.rename(
columns={
"start_time": "start_time",
"end_time": "end_time",
"speaker_label": "speaker_label",
}
)
vtt_file_path = f"{local_directory}/{file_name}.vtt"
subtitles = webvtt.read(vtt_file_path)
data = [
(
subtitle.start_in_seconds / 60,
subtitle.end_in_seconds / 60,
subtitle.text.strip(),
)
for subtitle in subtitles
]
titles = pd.DataFrame(data, columns=["start_time", "end_time", "text"])
transcript = pd.merge_asof(
titles.sort_values("start_time"),
df.sort_values("start_time"),
on="start_time",
direction="backward",
)
transcript = transcript.dropna(subset=["speaker_label"])
transcript = transcript[["start_time", "end_time_x", "speaker_label", "text"]]
transcript.columns = ["start_time", "end_time", "speaker_label", "text"]
# Reset the index
transcript = transcript.reset_index(drop=True)
print("Combined transcript successfully!")
return transcript
def aws_transcribe_parser(
self, transcript_df: pd.DataFrame, output_filename: str
) -> pd.DataFrame:
"""
Parses the AWS Transcribe output by cleaning duplicate texts and merging consecutive rows with
the same speaker.
"""
prev_text = None # Initialize prev_text
transcript_df["text"] = transcript_df["text"].apply(
lambda x: re.sub(r"[\"\'\--]+", "", x)
)
for index, row in transcript_df.iterrows():
if row["text"] == prev_text and row["speaker_label"] == prev_speaker:
transcript_df.at[merge_start, "end_time"] = row["end_time"]
transcript_df.drop(index, inplace=True)
else:
merge_start = index
prev_text = row["text"]
prev_speaker = row["speaker_label"]
transcript_df["group"] = (
transcript_df["speaker_label"] != transcript_df["speaker_label"].shift()
).cumsum()
result_df = transcript_df.groupby(
["group", "speaker_label"], as_index=False
).agg({"start_time": "first", "end_time": "last", "text": " ".join})
result_df = result_df.drop(columns=["group"])
result_df.to_csv(
"./data/transcriptFiles/" + output_filename + ".csv", index=False
)
return result_df
def delete_local_temp_file(self, tempFiles: str) -> bool:
"""
Delete a local temporary file specified by the file path.
"""
if os.path.exists("./data/tempFiles/" + tempFiles + ".json"):
os.remove("./data/tempFiles/" + tempFiles + ".json")
if os.path.exists("./data/tempFiles/" + tempFiles + ".vtt"):
os.remove("./data/tempFiles/" + tempFiles + ".vtt")
def runner(
self,
file_name: str,
input_bucket: str,
output_bucket: str,
transcribe_job_name: str,
aws_access_key: str,
aws_secret_access_key: str,
aws_region_name: str,
) -> None:
"""
Run the transcription process for an audio file using AWS Transcribe.
"""
transcribe_client, s3_client = self.create_client(
aws_access_key=aws_access_key,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
)
print("Transcribe_client created: ", transcribe_client)
print("s3_client created: ", s3_client)
# Create S3 buckets
print(
f"Create S3 Bucket {input_bucket} : ",
self.create_s3_bucket(s3_client, input_bucket, aws_region_name),
)
print(
f"Create S3 Bucket {output_bucket} : ",
self.create_s3_bucket(s3_client, output_bucket, aws_region_name),
)
URI = self.upload_to_s3(
s3_client, "./data/audioFiles/" + file_name, input_bucket
)
print("Upload completed now will initiate transcription job.")
self.transcribe_audio(
transcribe_client,
URI,
output_bucket,
transcribe_job_name=transcribe_job_name,
)
# Check status of transcription job
while (
transcribe_client.get_transcription_job(
TranscriptionJobName=transcribe_job_name
)["TranscriptionJob"]["TranscriptionJobStatus"]
!= "COMPLETED"
):
time.sleep(3)
# Download transcription job output
print(
"Download from S3 : ",
self.download_from_s3(
s3_client,
transcribe_job_name,
output_bucket,
local_directory="./data/tempFiles/",
),
)
print(
"Delete S3 Bucket Input Bucket : ",
self.delete_s3_bucket(s3_client, input_bucket),
)
print(
"Delete S3 Bucket Output Bucket: ",
self.delete_s3_bucket(s3_client, output_bucket),
)
try:
transcribe_client.delete_transcription_job(
TranscriptionJobName=transcribe_job_name
)
except:
print("Transcription Job does not exist.")
# Close clients
transcribe_client.close()
s3_client.close()
# combine the json and vtt results to create a transcript
df_transcript_combined = self.combine_files(
transcribe_job_name, local_directory="./data/tempFiles/"
)
df_transcript_combined_parsed = self.aws_transcribe_parser(
transcript_df=df_transcript_combined, output_filename=transcribe_job_name
)
print("Transcript parsed successfully")
self.delete_local_temp_file(tempFiles=transcribe_job_name)
return df_transcript_combined_parsed
if __name__ == "__main__":
dotenv.load_dotenv("./config/.env")
current_timestamp = str.lower(datetime.now().strftime("%Y-%b-%d-%I-%M-%p"))
aws_access_key = os.getenv("AWS_ACCESS_KEY")
aws_secret_access_key = os.getenv("AWS_SECRET_ACCESS_KEY")
print(aws_access_key, aws_secret_access_key)
aws_region_name = "us-east-2"
file_name = "test.wav"
input_bucket = f"resonate-input-{str(current_timestamp)}"
output_bucket = f"resonate-output-{str(current_timestamp)}"
transcribe_job_name = f"resonate-job-{str(current_timestamp)}"
rat = resonate_aws_transcribe()
df = rat.runner(
file_name=file_name,
input_bucket=input_bucket,
output_bucket=output_bucket,
transcribe_job_name=transcribe_job_name,
aws_access_key=aws_access_key,
aws_secret_access_key=aws_secret_access_key,
aws_region_name=aws_region_name,
)
print(df)
|