import streamlit as st
from transformers import pipeline
import torchaudio
from config import MODEL_ID
# Load the model and pipeline using the model_id variable
pipe = pipeline("audio-classification", model=MODEL_ID)
def classify_audio(filepath):
preds = pipe(filepath)
outputs = {"normal": 0.0, "artifact": 0.0, "murmur": 0.0}
for p in preds:
label = p["label"]
# Simplify the labels and accumulate the scores
if "artifact" in label:
outputs["artifact"] += p["score"]
elif "murmur" in label:
outputs["murmur"] += p["score"]
elif "extra" in label or "Normal" in label:
outputs["normal"] += p["score"]
return outputs
# Streamlit app layout
st.title("Heartbeat Sound Classification")
# Theme selection
theme = st.sidebar.selectbox(
"Select Theme",
["Light Green", "Light Blue"]
)
# Add custom CSS for styling based on the selected theme
if theme == "Light Green":
st.markdown(
"""
""",
unsafe_allow_html=True
)
elif theme == "Light Blue":
st.markdown(
"""
""",
unsafe_allow_html=True
)
# File uploader for audio files
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
if uploaded_file is not None:
st.subheader("Uploaded Audio File")
# Load and display the audio file
audio_bytes = uploaded_file.read()
st.audio(audio_bytes, format='audio/wav')
# Save the uploaded file to a temporary location
with open("temp_audio_file.wav", "wb") as f:
f.write(audio_bytes)
# Classify the audio file
st.write("Classifying the audio...")
results = classify_audio("temp_audio_file.wav")
# Display the classification results in a dedicated output box
st.subheader("Classification Results")
results_box = st.empty()
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
results_box.text(results_str)
# Sample Audio Files for classification
st.write("Sample Audio Files:")
examples = ['normal.wav', 'murmur.wav', 'extra_systole.wav', 'extra_hystole.wav', 'artifact.wav']
for example in examples:
if st.button(example):
st.subheader(f"Sample Audio: {example}")
audio_bytes = open(example, 'rb').read()
st.audio(audio_bytes, format='audio/wav')
results = classify_audio(example)
st.write("Results:")
results_str = "\n".join([f"{label}: {score:.2f}" for label, score in results.items()])
st.text(results_str)