File size: 4,498 Bytes
14ace35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
from gradio.components import Component
import gradio as gr
from abc import ABC, abstractclassmethod
import inspect
class BaseTCOModel(ABC):
# TO DO: Find way to specify which component should be used for computing cost
def __setattr__(self, name, value):
if isinstance(value, Component):
self._components.append(value)
self.__dict__[name] = value
def __init__(self):
super(BaseTCOModel, self).__setattr__("_components", [])
def get_components(self) -> list[Component]:
return self._components
def get_components_for_cost_computing(self):
return self.components_for_cost_computing
def get_name(self):
return self.name
def register_components_for_cost_computing(self):
args = inspect.getfullargspec(self.compute_cost_per_token)[0][1:]
self.components_for_cost_computing = [self.__getattribute__(arg) for arg in args]
@abstractclassmethod
def compute_cost_per_token(self):
pass
@abstractclassmethod
def render(self):
pass
def set_name(self, name):
self.name = name
def set_formula(self, formula):
self.formula = formula
def get_formula(self):
return self.formula
#The name of your new model service's class
class NewModel(BaseTCOModel):
def __init__(self):
#Name of the AI model service and the category it belongs to (SaaS, Open source)
self.set_name("(Category) Service name")
self.set_latency("The average latency of your model")
super().__init__()
def render(self):
#Create update functions that adjust the values of your cost/token depending on user's choices
def on_model_parameter_change(model_parameter):
if model_parameter == "Option 1":
input_tokens_cost_per_token = 0.1
output_tokens_cost_per_token = 0.2
else:
input_tokens_cost_per_token = 0.2
output_tokens_cost_per_token = 0.4
return input_tokens_cost_per_token, output_tokens_cost_per_token
#Create as many Gradio components as you want to provide information or customization to the user
#Put all their visibility to False
#Don't forget to put the interactive parameter of the component to False if the value is fixed
self.model_parameter = gr.Dropdown(["Option 1", "Option 2"], value="Option 1", interactive=True,
label="Title for this parameter",
visible=False, info="Add some information to clarify specific aspects of your parameter")
#Put the values of the input and output cost per token
#These values can be updated using a function above that is triggered by a change in the parameters
#Put default values accordingly to the default parameters
self.input_cost_per_token = gr.Number(0.1, visible=False,
label="($) Price/1K input prompt tokens",
interactive=False
)
self.output_cost_per_token = gr.Number(0.2, visible=False,
label="($) Price/1K output prompt tokens",
interactive=False
)
#Trigger the values modification linked to the parameter change
self.model_parameter.change(on_model_parameter_change, inputs=self.model_parameter, outputs=[self.input_cost_per_token, self.output_cost_per_token])
#Add the labor cost of your solution
#Note that for an Open Source solution, we estimate it to 1000 $ per month and for a SaaS solution to 0
self.labor = gr.Number(0, visible=False,
label="($) Labor cost per month",
info="This is an estimate of the labor cost of the AI engineer in charge of deploying the model",
interactive=True
)
def compute_cost_per_token(self, input_cost_per_token, output_cost_per_token, labor):
#Additional computation on your cost_per_token values
#You often need to convert some values here
return input_cost_per_token, output_cost_per_token, labor |