File size: 9,578 Bytes
e0e93c4 50f19fa 044dd38 5919083 ea19e17 ecaa1ea 044dd38 80b9501 044dd38 ea19e17 564f119 5919083 ea19e17 e0e93c4 044dd38 f4c03fc 044dd38 564f119 f4c03fc 044dd38 7432d34 564f119 f4c03fc 044dd38 7432d34 5919083 f4c03fc 044dd38 f4c03fc 5919083 564f119 947c3f0 564f119 5919083 564f119 5919083 564f119 ea19e17 80b9501 94ce651 044dd38 5919083 ecaa1ea 5919083 ecaa1ea 80b9501 50f19fa ea19e17 044dd38 ecaa1ea f4c03fc 80b9501 f4c03fc 80b9501 ecaa1ea 044dd38 73d3fc4 2d9906b 50f19fa ecaa1ea 80b9501 b3b6d77 2d9906b 50f19fa ecaa1ea 80b9501 73d3fc4 80b9501 ea19e17 f4c03fc ea19e17 f4c03fc ea19e17 564f119 044dd38 ecaa1ea ea19e17 564f119 044dd38 ecaa1ea ea19e17 044dd38 5919083 564f119 5919083 ea19e17 5919083 50f19fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
import models
import pandas as pd
import theme
text = "<h1 style='text-align: center; color: #f0ba2d; font-size: 40px;'>TCO Comparison Calculator"
text0 = "<h1 style='text-align: center; color: midnightblue; font-size: 30px;'>Describe your use case"
text1 = "<h1 style='text-align: center; color: midnightblue; font-size: 25px;'>First option"
text2 = "<h1 style='text-align: center; color: midnightblue; font-size: 25px;'>Second option"
text3 = "<h1 style='text-align: center; color: midnightblue; font-size: 30px;'>Compute and compare TCOs"
description=f"""
<p>In this demo application, we help you compare different AI model services, such as Open source or SaaS solutions, based on the Total Cost of Ownership for their deployment. Please note that we focus on getting the service up and running, but not the maintenance that follows.</p>
<p>First, you'll have to select your use case. Then, select the two model service options you'd like to compare. Depending on the options you chose, you could be able to customize some parameters of the set-up. Eventually, we will provide you with the cost of deployment for the selected model services, as a function of the number of requests experienced by your service. You can compare both solutions to evaluate which one best suits your needs.</p>
"""
markdown = """
<div style="
background-color: #f0ba2d;
color: #050f19;
border-radius: 10px;
padding: 3px;
margin: 0 auto;
width: 150px;
text-align: center;
font-size: 18px;
">
Comparison
</div>
"""
def on_use_case_change(use_case):
if use_case == "Summarize":
return gr.update(value=500), gr.update(value=200)
elif use_case == "Question-Answering":
return gr.update(value=300), gr.update(value=300)
else:
return gr.update(value=50), gr.update(value=10)
def compare(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2):
r = tco1 / tco2
comparison_result3 = ""
if r < 1:
comparison_result = f"The cost/request of the second {dropdown2} service is {1/r:.5f} times more expensive than the one of the first {dropdown} service."
if labor_cost1 > labor_cost2:
meeting_point = (labor_cost2 - labor_cost1) / (tco1 - tco2)
comparison_result3 = f"The number of requests you need to achieve in a month to have the labor cost of the {dropdown} service be absorbed and both solution TCOs be equal would be of {meeting_point:.0f}."
elif r > 1:
comparison_result = f"The cost/request of the second {dropdown2} service is {r:.5f} times cheaper than the one of the first {dropdown} service."
if labor_cost1 < labor_cost2:
meeting_point = (labor_cost2 - labor_cost1) / (tco1 - tco2)
comparison_result3 = f"The number of requests you need to achieve in a month to have the labor cost of the {dropdown2} service be absorbed and both solution TCOs be equal would be of {meeting_point:.0f}."
else:
comparison_result = f"Both solutions have the same cost/request."
info = f"""
<br>
<p> {comparison_result} </p>
<br>
<p> {comparison_result3} </p>
"""
return info
def create_table(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2):
list_values = []
labor_cost1 = round(labor_cost1, 1)
labor_cost2 = round(labor_cost2, 1)
first_sol = [tco1, labor_cost1]
second_sol = [tco2, labor_cost2]
list_values.append(first_sol)
list_values.append(second_sol)
data = pd.DataFrame(list_values, index=["1)" + " " + dropdown, "2)" + " " + dropdown2], columns=["Cost/request ($) ", "Labor Cost ($/month)"])
formatted_data = data.copy()
formatted_data["Cost/request ($) "] = formatted_data["Cost/request ($) "].apply('{:.5f}'.format)
formatted_data["Labor Cost ($/month)"] = formatted_data["Labor Cost ($/month)"].apply('{:.1f}'.format)
styled_data = formatted_data.style\
.set_properties(**{'background-color': '#081527', 'color': '#ffffff', 'border-color': '#ffffff', 'border-width': '1px', 'border-style': 'solid'})\
.to_html()
return gr.update(value=styled_data)
def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2):
request_ranges = [100, 200, 300, 400, 500, 1000, 10000]
costs_tco1 = [(tco1 * req + labour_cost1) for req in request_ranges]
costs_tco2 = [(tco2 * req + labour_cost2) for req in request_ranges]
data = pd.DataFrame({
"Number of requests": request_ranges * 2,
"Cost ($)": costs_tco1 + costs_tco2,
"AI model service": ["1)" + " " + dropdown] * len(request_ranges) + ["2)" + " " + dropdown2] * len(request_ranges)
}
)
return gr.LinePlot.update(data, visible=True, x="Number of requests", y="Cost ($)",color="AI model service",color_legend_position="bottom", title="Total Cost of Model Serving for one month", height=300, width=500, tooltip=["Number of requests", "Cost ($)", "AI model service"])
style = theme.Style()
with gr.Blocks(theme=style) as demo:
Models: list[models.BaseTCOModel] = [models.OpenAIModel, models.CohereModel, models.OpenSourceLlama2Model]
model_names = [Model().get_name() for Model in Models]
gr.Markdown(value=text)
gr.Markdown(value=description)
with gr.Row():
with gr.Column():
with gr.Row():
use_case = gr.Dropdown(["Summarize", "Question-Answering", "Classification"], value="Question-Answering", label=" Describe your use case ")
with gr.Accordion("Click here if you want to customize the number of input and output tokens per request", open=False):
with gr.Row():
input_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Input tokens per request", info="We suggest a value that we believe best suit your use case choice but feel free to adjust", interactive=True)
output_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Output tokens per request", info="We suggest a value that we believe best suit your use case choice but feel free to adjust", interactive=True)
with gr.Row(visible=False):
num_users = gr.Number(value="1000", interactive = True, label=" Number of users for your service ")
use_case.change(on_use_case_change, inputs=use_case, outputs=[input_tokens, output_tokens])
with gr.Row():
with gr.Column():
page1 = models.ModelPage(Models)
dropdown = gr.Dropdown(model_names, interactive=True, label=" First AI service option ")
with gr.Accordion("Click here for more information on the computation parameters for your first AI service option", open=False):
page1.render()
with gr.Column():
page2 = models.ModelPage(Models)
dropdown2 = gr.Dropdown(model_names, interactive=True, label=" Second AI service option ")
with gr.Accordion("Click here for more information on the computation parameters for your second AI service option", open=False):
page2.render()
dropdown.change(page1.make_model_visible, inputs=[dropdown, use_case], outputs=page1.get_all_components())
dropdown2.change(page2.make_model_visible, inputs=[dropdown2, use_case], outputs=page2.get_all_components())
compute_tco_btn = gr.Button("Compute & Compare", size="lg", variant="primary", scale=1)
tco1 = gr.State()
tco2 = gr.State()
labor_cost1 = gr.State()
labor_cost2 = gr.State()
with gr.Row():
with gr.Column():
tco_output = gr.Text("Cost/request 1: ", label=" Cost/request for the first option ", info="This is only the infrastructure cost per request for deployment, the labor cost still has to be added for the AI model service deployment TCO.")
latency_info = gr.Markdown()
with gr.Accordion("Click here to see the formula", open=False):
tco_formula = gr.Markdown()
with gr.Column():
tco_output2 = gr.Text("Cost/request 2: ", label=" Cost/request for the second option ", info="This is only the infrastructure cost per request for deployment, the labor cost still has to be added for the AI model service deployment TCO.")
latency_info2 = gr.Markdown()
with gr.Accordion("Click here to see the formula", open=False):
tco_formula2 = gr.Markdown()
with gr.Row():
gr.Markdown(markdown)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
table = gr.Markdown()
with gr.Column(scale=2):
info = gr.Markdown()
with gr.Row():
plot = gr.LinePlot(visible=False)
compute_tco_btn.click(page1.compute_cost_per_token, inputs=page1.get_all_components_for_cost_computing() + [dropdown, input_tokens, output_tokens], outputs=[tco_output, tco1, tco_formula, latency_info, labor_cost1]).then(page2.compute_cost_per_token, inputs=page2.get_all_components_for_cost_computing() + [dropdown2, input_tokens, output_tokens], outputs=[tco_output2, tco2, tco_formula2, latency_info2, labor_cost2]).then(create_table, inputs=[tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2], outputs=table).then(compare, inputs=[tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2], outputs=info).then(update_plot, inputs=[tco1, tco2, dropdown, dropdown2, labor_cost1, labor_cost2], outputs=plot)
demo.launch(debug=True) |