File size: 7,668 Bytes
e0e93c4 50f19fa 044dd38 5919083 1c2b775 ea19e17 1c2b775 ea19e17 1c2b775 ea19e17 e0e93c4 044dd38 1c2b775 f4c03fc 1c2b775 f4c03fc 1c2b775 564f119 7ebfebe 564f119 7ebfebe 564f119 7ebfebe 564f119 7ebfebe 564f119 1c2b775 564f119 1c2b775 5919083 1c2b775 ea19e17 80b9501 1c2b775 80b9501 94ce651 044dd38 1c2b775 ecaa1ea 5919083 ecaa1ea 80b9501 50f19fa ea19e17 044dd38 ecaa1ea f4c03fc 80b9501 f4c03fc 80b9501 ecaa1ea 044dd38 73d3fc4 2d9906b 50f19fa ecaa1ea 80b9501 b3b6d77 2d9906b 50f19fa ecaa1ea 80b9501 73d3fc4 80b9501 ea19e17 f4c03fc ea19e17 f4c03fc 7ebfebe ea19e17 7ebfebe 5919083 1c2b775 ea19e17 1c2b775 50f19fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import models
import pandas as pd
import theme
import matplotlib.pyplot as plt
text = "<h1 style='text-align: center; color: #333333; font-size: 40px;'>TCO Comparison Calculator"
text2 = "Please note that the cost/request only defines the infrastructure cost for deployment. The labor cost must be added for the whole AI model service deployment TCO."
description=f"""
<p>In this demo application, we help you compare different AI model services, such as Open source or SaaS solutions, based on the Total Cost of Ownership for their deployment.</p>
<p>Please note that we focus on getting the service up and running, but not the maintenance that follows.</p>
"""
def on_use_case_change(use_case):
if use_case == "Summarize":
return gr.update(value=500), gr.update(value=200)
elif use_case == "Question-Answering":
return gr.update(value=300), gr.update(value=300)
else:
return gr.update(value=50), gr.update(value=10)
def compare_info(tco1, tco2, dropdown, dropdown2):
# Create a bar chart
services = [dropdown, dropdown2]
costs_to_compare = [tco1, tco2]
plt.figure(figsize=(6, 4))
plt.bar(services, costs_to_compare, color=['red', 'green'])
plt.xlabel('AI option services', fontsize=10)
plt.ylabel('($) Cost/Request', fontsize=10)
plt.title('Comparison of Cost/Request', fontsize=14)
# Customize x-axis labels
#plt.xticks(rotation=30, ha='right') # Rotate by 30 degrees and align to the right
# Save the plot to a file or display it
plt.tight_layout()
plt.savefig('cost_comparison.png') # Save to a file
return gr.update(value='cost_comparison.png')
def create_table(tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2):
list_values = []
first_sol = [tco1, labor_cost1, latency]
second_sol = [tco2, labor_cost2, latency2]
list_values.append(first_sol)
list_values.append(second_sol)
data = pd.DataFrame(list_values, index=[dropdown, dropdown2], columns=["Cost/request ($) ", "Labor Cost ($/month)", "Average latency (s)"])
formatted_data = data.copy()
formatted_data["Cost/request ($) "] = formatted_data["Cost/request ($) "].apply('{:.5f}'.format)
formatted_data["Labor Cost ($/month)"] = formatted_data["Labor Cost ($/month)"].apply('{:.0f}'.format)
styled_data = formatted_data.style\
.set_properties(**{'background-color': '#ffffff', 'color': '#000000', 'border-color': '#e0e0e0', 'border-width': '1px', 'border-style': 'solid'})\
.to_html()
centered_styled_data = f"<center>{styled_data}</center>"
return gr.update(value=centered_styled_data)
def update_plot(tco1, tco2, dropdown, dropdown2, labour_cost1, labour_cost2):
request_ranges = list(range(0, 1001, 100)) + list(range(1000, 10001, 500)) + list(range(10000, 100001, 1000)) + list(range(100000, 2000001, 100000))
costs_tco1 = [(tco1 * req + labour_cost1) for req in request_ranges]
costs_tco2 = [(tco2 * req + labour_cost2) for req in request_ranges]
data = pd.DataFrame({
"Number of requests": request_ranges * 2,
"Cost ($)": costs_tco1 + costs_tco2,
"AI model service": ["1)" + " " + dropdown] * len(request_ranges) + ["2)" + " " + dropdown2] * len(request_ranges)
}
)
return gr.LinePlot.update(data, visible=True, x="Number of requests", y="Cost ($)",color="AI model service",color_legend_position="bottom", title="Set-up TCO for one month", height=300, width=500, tooltip=["Number of requests", "Cost ($)", "AI model service"])
style = theme.Style()
with gr.Blocks(theme=style) as demo:
Models: list[models.BaseTCOModel] = [models.OpenAIModel, models.CohereModel, models.OpenSourceLlama2Model]
model_names = [Model().get_name() for Model in Models]
gr.Markdown(value=text)
gr.Markdown(value=description)
with gr.Row():
with gr.Column():
with gr.Row():
use_case = gr.Dropdown(["Summarize", "Question-Answering", "Classification"], value="Question-Answering", label=" Describe your use case ")
with gr.Accordion("Click here if you want to customize the number of input and output tokens per request", open=False):
with gr.Row():
input_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Input tokens per request", info="We suggest a value that we believe best suit your use case choice but feel free to adjust", interactive=True)
output_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Output tokens per request", info="We suggest a value that we believe best suit your use case choice but feel free to adjust", interactive=True)
with gr.Row(visible=False):
num_users = gr.Number(value="1000", interactive = True, label=" Number of users for your service ")
use_case.change(on_use_case_change, inputs=use_case, outputs=[input_tokens, output_tokens])
with gr.Row():
with gr.Column():
page1 = models.ModelPage(Models)
dropdown = gr.Dropdown(model_names, interactive=True, label=" First AI service option ")
with gr.Accordion("Click here for more information on the computation parameters for your first AI service option", open=False):
page1.render()
with gr.Column():
page2 = models.ModelPage(Models)
dropdown2 = gr.Dropdown(model_names, interactive=True, label=" Second AI service option ")
with gr.Accordion("Click here for more information on the computation parameters for your second AI service option", open=False):
page2.render()
dropdown.change(page1.make_model_visible, inputs=[dropdown, use_case], outputs=page1.get_all_components())
dropdown2.change(page2.make_model_visible, inputs=[dropdown2, use_case], outputs=page2.get_all_components())
compute_tco_btn = gr.Button("Compute & Compare", size="lg", variant="primary", scale=1)
tco1 = gr.State()
tco2 = gr.State()
labor_cost1 = gr.State()
labor_cost2 = gr.State()
latency = gr.State()
latency2 = gr.State()
with gr.Row():
with gr.Accordion("Click here to see the cost/request computation formula", open=False):
with gr.Row():
with gr.Column():
tco_formula = gr.Markdown()
with gr.Column():
tco_formula2 = gr.Markdown()
with gr.Row(variant='panel'):
with gr.Column():
with gr.Row():
table = gr.Markdown()
with gr.Row():
with gr.Column(scale=1):
image = gr.Image()
info = gr.Markdown(text2)
with gr.Column(scale=2):
plot = gr.LinePlot(visible=False)
compute_tco_btn.click(page1.compute_cost_per_token, inputs=page1.get_all_components_for_cost_computing() + [dropdown, input_tokens, output_tokens], outputs=[tco1, tco_formula, latency, labor_cost1]).then(page2.compute_cost_per_token, inputs=page2.get_all_components_for_cost_computing() + [dropdown2, input_tokens, output_tokens], outputs=[tco2, tco_formula2, latency2, labor_cost2]).then(create_table, inputs=[tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2], outputs=table).then(compare_info, inputs=[tco1, tco2, dropdown, dropdown2], outputs=image).then(update_plot, inputs=[tco1, tco2, dropdown, dropdown2, labor_cost1, labor_cost2], outputs=plot)
demo.launch(debug=True) |