File size: 5,693 Bytes
e0e93c4
50f19fa
0a5ab63
5919083
ea19e17
d2258bf
91453e3
 
 
deda386
 
91453e3
 
7aa3fde
ea19e17
9411fc2
9c1a1da
9411fc2
9c1a1da
 
 
 
 
9411fc2
0a5ab63
 
eef299f
044dd38
 
 
 
 
 
 
 
5919083
ecaa1ea
 
eef299f
50f19fa
ea19e17
91453e3
 
ea19e17
044dd38
 
 
ecaa1ea
f4c03fc
80b9501
f4c03fc
 
80b9501
ecaa1ea
044dd38
 
 
73d3fc4
2d9906b
50f19fa
ecaa1ea
 
80b9501
b3b6d77
2d9906b
50f19fa
ecaa1ea
 
80b9501
0a5ab63
 
 
91453e3
80b9501
 
ea19e17
f4c03fc
0a5ab63
91453e3
7ebfebe
 
9411fc2
5919083
 
1c2b775
 
 
9411fc2
91453e3
1c2b775
 
9c1a1da
9411fc2
1c2b775
 
ea19e17
0a5ab63
 
 
 
50f19fa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
import models
import results
import theme
    
text = "<h1 style='text-align: center; color: #333333; font-size: 40px;'>AI TCO Comparison Calculator"
text2 = "<h1 style='color: #333333; font-size: 20px;'>πŸ™Œ Want to contribute?"
text3 = "Please note that the cost/request only defines the infrastructure cost for deployment. The labor cost must be added for the whole AI model service deployment TCO."
intro = f"""
<p>Discover and compare various AI model services, including SaaS and "Deploy Yourself" solutions, based on the Total Cost of Ownership for their deployment. 😊</p> 
<p>Please keep in mind that our focus is on launching the AI model service, not accounting for additional maintenance costs.πŸš€</p>
"""
contribution = f"""
<p>If you want to contribute to the calculator by <strong>adding your own AI service option</strong>, follow this <a href="https://huggingface.co/spaces/mithril-security/TCO_calculator/blob/main/How_to_contribute.md">tutorial</a> πŸ‘ˆ. </p>
"""
formula = r"""
$CR = \frac{CIT_{1K} \times IT + COT_{1K} \times OT}{1000}$  <br>
with: <br>
$CR$ = Cost per Request <br>
$CIT_{1K}$ = Cost per 1000 Input Tokens <br>
$COT_{1K}$ = Cost per 1000 Output Tokens <br>
$IT$ = Input Tokens <br>
$OT$ = Output Tokens
"""
def set_shared_data(page1, page2):
    return page1, page2

def on_use_case_change(use_case):
    if use_case == "Summarize":
        return gr.update(value=500), gr.update(value=200)
    elif use_case == "Question-Answering":
        return gr.update(value=300), gr.update(value=300)
    else:
        return gr.update(value=50), gr.update(value=10)
    
style = theme.Style()

with gr.Blocks(theme=style) as demo:
    Models: list[models.BaseTCOModel] = [models.OpenAIModelGPT4, models.OpenAIModelGPT3_5, models.CohereModel, models.DIYLlama2Model]
    model_names = [Model().get_name() for Model in Models]
    gr.Markdown(value=text)
    gr.Markdown(value=intro + text2)
    gr.Markdown(value=contribution)
    
    with gr.Row():
        with gr.Column():
            with gr.Row():
                use_case = gr.Dropdown(["Summarize", "Question-Answering", "Classification"], value="Question-Answering", label=" Describe your use case ")
            with gr.Accordion("Click here if you want to customize the number of input and output tokens per request", open=False):    
                with gr.Row():
                    input_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Input tokens per request", info="We suggest a value that we believe best suit your use case choice but feel free to adjust", interactive=True)
                    output_tokens = gr.Slider(minimum=1, maximum=1000, value=300, step=1, label=" Output tokens per request", info="We suggest a value that we believe best suit your use case choice but feel free to adjust", interactive=True)
                with gr.Row(visible=False):    
                    num_users = gr.Number(value="1000", interactive = True, label=" Number of users for your service ")
    
    use_case.change(on_use_case_change, inputs=use_case, outputs=[input_tokens, output_tokens])
    
    with gr.Row():
        with gr.Column():
            page1 = models.ModelPage(Models)
            dropdown = gr.Dropdown(model_names, interactive=True, label=" First AI service option ")
            with gr.Accordion("Click here for more information on the computation parameters for your first AI service option", open=False):    
                page1.render()

        with gr.Column():
            page2 = models.ModelPage(Models)
            dropdown2 = gr.Dropdown(model_names, interactive=True, label=" Second AI service option ")
            with gr.Accordion("Click here for more information on the computation parameters for your second AI service option", open=False):        
                page2.render()
    
    shared_page1, shared_page2 = set_shared_data(page1, page2)
    results.set_shared_pages(shared_page1, shared_page2)

    dropdown.change(page1.make_model_visible, inputs=[dropdown, use_case], outputs=page1.get_all_components())
    dropdown2.change(page2.make_model_visible, inputs=[dropdown2, use_case], outputs=page2.get_all_components())
    
    compute_tco_btn = gr.Button("Compute & Compare", size="lg", variant="primary", scale=1) 
    tco1, tco2, labor_cost1, labor_cost2, latency, latency2 = [gr.State() for _ in range(6)]

    with gr.Row():
        with gr.Accordion("Click here to see the cost/request computation formula", open=False):
            tco_formula = gr.Markdown(formula)
        
    with gr.Row(variant='panel'):
        with gr.Column():
            with gr.Row():
                table = gr.Markdown()
            with gr.Row():
                info = gr.Markdown(text3)
            with gr.Row():
                with gr.Column(scale=1):
                    image = gr.Image(visible=False)
                    ratio = gr.Markdown()
                with gr.Column(scale=2):
                    plot = gr.LinePlot(visible=False)
    
    compute_tco_btn.click(results.compute_cost_per_request, inputs=page1.get_all_components_for_cost_computing() + page2.get_all_components_for_cost_computing() + [dropdown, dropdown2, input_tokens, output_tokens], outputs=[tco1, latency, labor_cost1, tco2, latency2, labor_cost2])\
        .then(results.create_table, inputs=[tco1, tco2, labor_cost1, labor_cost2, dropdown, dropdown2, latency, latency2], outputs=table)\
        .then(results.compare_info, inputs=[tco1, tco2, dropdown, dropdown2], outputs=[image, ratio])\
        .then(results.update_plot, inputs=[tco1, tco2, dropdown, dropdown2, labor_cost1, labor_cost2], outputs=plot)

demo.launch(debug=True)