|
from gradio.components import Component |
|
import gradio as gr |
|
import pandas as pd |
|
from abc import ABC, abstractclassmethod |
|
import inspect |
|
|
|
class BaseTCOModel(ABC): |
|
|
|
def __setattr__(self, name, value): |
|
if isinstance(value, Component): |
|
self._components.append(value) |
|
self.__dict__[name] = value |
|
|
|
def __init__(self): |
|
super(BaseTCOModel, self).__setattr__("_components", []) |
|
self.use_case = None |
|
self.num_users = None |
|
self.input_tokens = None |
|
self.output_tokens = None |
|
|
|
def get_components(self) -> list[Component]: |
|
return self._components |
|
|
|
def get_components_for_cost_computing(self): |
|
return self.components_for_cost_computing |
|
|
|
def get_name(self): |
|
return self.name |
|
|
|
def register_components_for_cost_computing(self): |
|
args = inspect.getfullargspec(self.compute_cost_per_token)[0][1:] |
|
self.components_for_cost_computing = [self.__getattribute__(arg) for arg in args] |
|
|
|
@abstractclassmethod |
|
def compute_cost_per_token(self): |
|
pass |
|
|
|
@abstractclassmethod |
|
def render(self): |
|
pass |
|
|
|
def set_name(self, name): |
|
self.name = name |
|
|
|
def set_formula(self, formula): |
|
self.formula = formula |
|
|
|
def get_formula(self): |
|
return self.formula |
|
|
|
def set_latency(self, latency): |
|
self.latency = latency |
|
|
|
def get_latency(self): |
|
return self.latency |
|
|
|
class OpenAIModel(BaseTCOModel): |
|
|
|
def __init__(self): |
|
self.set_name("(SaaS) OpenAI") |
|
self.set_formula(r"""$CR = \frac{CIT\_1K \times IT + COT\_1K \times OT}{1000}$ <br> |
|
with: <br> |
|
CR = Cost per Request <br> |
|
CIT_1K = Cost per 1000 Input Tokens (from OpenAI's pricing web page) <br> |
|
COT_1K = Cost per 1000 Output Tokens <br> |
|
IT = Input Tokens <br> |
|
OT = Output Tokens |
|
""") |
|
self.latency = "15s" |
|
super().__init__() |
|
|
|
def render(self): |
|
def on_model_change(model): |
|
|
|
if model == "GPT-4": |
|
self.latency = "15s" |
|
return gr.Dropdown.update(choices=["8K", "32K"]) |
|
else: |
|
self.latency = "5s" |
|
return gr.Dropdown.update(choices=["4K", "16K"], value="4K") |
|
|
|
self.model = gr.Dropdown(["GPT-4", "GPT-3.5 Turbo"], value="GPT-4", |
|
label="OpenAI models", |
|
interactive=True, visible=False) |
|
self.context_length = gr.Dropdown(["8K", "32K"], value="8K", interactive=True, |
|
label="Context size", |
|
visible=False, info="Number of tokens the model considers when processing text") |
|
self.model.change(on_model_change, inputs=self.model, outputs=self.context_length) |
|
|
|
def compute_cost_per_token(self, model, context_length): |
|
"""Cost per token = """ |
|
|
|
if model == "GPT-4" and context_length == "8K": |
|
cost_per_1k_input_tokens = 0.03 |
|
cost_per_1k_output_tokens = 0.06 |
|
elif model == "GPT-4" and context_length == "32K": |
|
cost_per_1k_input_tokens = 0.06 |
|
cost_per_1k_output_tokens = 0.12 |
|
elif model == "GPT-3.5" and context_length == "4K": |
|
cost_per_1k_input_tokens = 0.0015 |
|
cost_per_1k_output_tokens = 0.002 |
|
else: |
|
cost_per_1k_input_tokens = 0.003 |
|
cost_per_1k_output_tokens = 0.004 |
|
cost_per_input_token = (cost_per_1k_input_tokens / 1000) |
|
cost_per_output_token = (cost_per_1k_output_tokens / 1000) |
|
|
|
return cost_per_input_token, cost_per_output_token |
|
|
|
class OpenSourceLlama2Model(BaseTCOModel): |
|
|
|
def __init__(self): |
|
self.set_name("(Open source) Llama 2") |
|
self.set_formula(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$<br> |
|
with: <br> |
|
CT = Cost per Token <br> |
|
VM_CH = VM Cost per Hour <br> |
|
ITS = Input Tokens per Second <br> |
|
OTS = Output Tokens per Second <br> |
|
U = Used <br> |
|
IT = Input Tokens <br> |
|
OT = Output Tokens |
|
""") |
|
self.set_latency("27s") |
|
super().__init__() |
|
|
|
def render(self): |
|
vm_choices = ["1x Nvidia A100 (Azure NC24ads A100 v4)", |
|
"2x Nvidia A100 (Azure NC24ads A100 v4)", |
|
"2x Nvidia A100 (Azure ND96amsr A100 v4)"] |
|
|
|
def on_model_change(model): |
|
if model == "Llama 2 7B": |
|
return [gr.Dropdown.update(choices=vm_choices), |
|
gr.Markdown.update(value="To see the benchmark results use for the Llama2-7B model, [click here](https://example.com/script)"), |
|
gr.Number.update(value=3.6730), |
|
gr.Number.update(value=694.38), |
|
gr.Number.update(value=694.38), |
|
] |
|
else: |
|
not_supported_vm = ["1x Nvidia A100 (Azure NC24ads A100 v4)", "2x Nvidia A100 (Azure NC24ads A100 v4)"] |
|
choices = [x for x in vm_choices if x not in not_supported_vm] |
|
return [gr.Dropdown.update(choices=choices, value="2x Nvidia A100 (Azure ND96amsr A100 v4)"), |
|
gr.Markdown.update(value="To see the benchmark results used for the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)"), |
|
gr.Number.update(value=2*37.186), |
|
gr.Number.update(value=2860), |
|
gr.Number.update(value=18.545), |
|
] |
|
|
|
def on_vm_change(model, vm): |
|
|
|
if model == "Llama 2 7B" and vm == "1x Nvidia A100 (Azure NC24ads A100 v4)": |
|
return [gr.Number.update(value=4.777), gr.Number.update(value=694.38), gr.Number.update(value=694.38)] |
|
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure NC24ads A100 v4)": |
|
return [gr.Number.update(value=2*4.777), gr.Number.update(value=1388.76), gr.Number.update(value=1388.76)] |
|
elif model == "Llama 2 7B" and vm == "2x Nvidia A100 (Azure ND96amsr A100 v4)": |
|
return [gr.Number.update(value=2*37.186), gr.Number.update(value=2777.52), gr.Number.update(value=2777.52)] |
|
elif model == "Llama 2 70B" and vm == "2x Nvidia A100 (Azure ND96amsr A100 v4)": |
|
return [gr.Number.update(value=2*37.186), gr.Number.update(value=2860), gr.Number.update(value=18.449)] |
|
|
|
self.model = gr.Dropdown(["Llama 2 7B", "Llama 2 70B"], value="Llama 2 70B", label="OpenSource models", visible=False) |
|
self.vm = gr.Dropdown(choices=["2x Nvidia A100 (Azure ND96amsr A100 v4)"], |
|
value="2x Nvidia A100 (Azure ND96amsr A100 v4)", |
|
visible=False, |
|
label="Instance of VM with GPU", |
|
info="Your options for this choice depend on the model you previously chose" |
|
) |
|
self.vm_cost_per_hour = gr.Number(2*37.186, label="VM instance cost per hour", |
|
interactive=False, visible=False) |
|
self.input_tokens_per_second = gr.Number(2860, visible=False, |
|
label="Number of output tokens per second for this specific model and VM instance", |
|
interactive=False |
|
) |
|
self.output_tokens_per_second = gr.Number(18.449, visible=False, |
|
label="Number of output tokens per second for this specific model and VM instance", |
|
interactive=False |
|
) |
|
self.info = gr.Markdown("To see the script used to benchmark the Llama2-70B model, [click here](https://www.cursor.so/blog/llama-inference#user-content-fn-llama-paper)", interactive=False, visible=False) |
|
|
|
self.model.change(on_model_change, inputs=self.model, outputs=[self.vm, self.info, self.vm_cost_per_hour, self.input_tokens_per_second, self.output_tokens_per_second]) |
|
self.vm.change(on_vm_change, inputs=[self.model, self.vm], outputs=[self.vm_cost_per_hour, self.input_tokens_per_second, self.output_tokens_per_second]) |
|
self.used = gr.Slider(minimum=0.01, value=30., step=0.01, label="% used", |
|
info="Percentage of time the GPU is used", |
|
interactive=True, |
|
visible=False) |
|
|
|
def compute_cost_per_token(self, vm_cost_per_hour, input_tokens_per_second, output_tokens_per_second, used): |
|
cost_per_input_token = vm_cost_per_hour * 100 / (3600 * used * input_tokens_per_second) |
|
cost_per_output_token = vm_cost_per_hour * 100 / (3600 * used * output_tokens_per_second) |
|
return cost_per_input_token, cost_per_output_token |
|
|
|
class OpenSourceDIY(BaseTCOModel): |
|
|
|
def __init__(self): |
|
self.set_name("(Open source) DIY") |
|
self.set_formula(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$<br> |
|
with: <br> |
|
CT = Cost per Token <br> |
|
VM_CH = VM Cost per Hour <br> |
|
ITS = Input Tokens per Second <br> |
|
OTS = Output Tokens per Second <br> |
|
U = Used <br> |
|
IT = Input Tokens <br> |
|
OT = Output Tokens |
|
""") |
|
self.set_latency("The latency can't be estimated in the DIY scenario for the model isn't defined") |
|
super().__init__() |
|
|
|
def render(self): |
|
self.info = gr.Markdown("Compute the cost/token based on our formula below, using your own parameters", visible=False) |
|
self.display_formula = gr.Markdown(r"""$CT = \frac{VM\_CH \times 100}{3600 \times U} \times (\frac{IT}{ITS} + \frac{OT}{OTS})$<br> |
|
with: <br> |
|
CT = Cost per Token <br> |
|
VM_CH = VM Cost per Hour <br> |
|
ITS = Input Tokens per Second <br> |
|
OTS = Output Tokens per Second <br> |
|
U = Used <br> |
|
IT = Input Tokens <br> |
|
OT = Output Tokens |
|
""", visible=False) |
|
self.vm_cost_per_hour = gr.Number(3.5, label="VM instance cost per hour", |
|
interactive=True, visible=False) |
|
self.input_tokens_per_second = gr.Number(300, visible=False, |
|
label="Number of input tokens per second processed for this specific model and VM instance", |
|
interactive=True |
|
) |
|
self.output_tokens_per_second = gr.Number(300, visible=False, |
|
label="Number of output tokens per second processed for this specific model and VM instance", |
|
interactive=True |
|
) |
|
self.used = gr.Slider(minimum=0.01, value=50., step=0.01, label="% used", |
|
info="Percentage of time the GPU is used", |
|
interactive=True, |
|
visible=False) |
|
|
|
def compute_cost_per_token(self, vm_cost_per_hour, input_tokens_per_second, output_tokens_per_second, used): |
|
cost_per_input_token = vm_cost_per_hour * 100 / (3600 * used * input_tokens_per_second) |
|
cost_per_output_token = vm_cost_per_hour * 100 / (3600 * used * output_tokens_per_second) |
|
return cost_per_input_token, cost_per_output_token |
|
|
|
class CohereModel(BaseTCOModel): |
|
|
|
def __init__(self): |
|
self.set_name("(SaaS) Cohere") |
|
self.set_formula(r"""$CR = \frac{CT\_1M \times (IT + OT)}{1000000}$ <br> |
|
with: <br> |
|
CR = Cost per Request <br> |
|
CT_1M = Cost per one million Tokens (from Cohere's pricing web page) <br> |
|
IT = Input Tokens <br> |
|
OT = Output Tokens |
|
""") |
|
self.set_latency("") |
|
super().__init__() |
|
|
|
def render(self): |
|
self.model = gr.Dropdown(["Default", "Custom"], value="Default", |
|
label="Model", |
|
interactive=True, visible=False) |
|
if self.use_case == "Summarize": |
|
self.model: gr.Dropdown.update(choices=["Default"]) |
|
elif self.use_case == "Question-answering": |
|
self.model: gr.Dropdown.update(choices=["Default", "Custom"]) |
|
else: |
|
self.model: gr.Dropdown.update(choices=["Default", "Custom"]) |
|
|
|
def compute_cost_per_token(self, model): |
|
"""Cost per token = """ |
|
use_case = self.use_case |
|
|
|
if use_case == "Generate": |
|
if model == "Default": |
|
cost_per_1M_tokens = 15 |
|
else: |
|
cost_per_1M_tokens = 30 |
|
elif use_case == "Summarize": |
|
cost_per_1M_tokens = 15 |
|
else: |
|
cost_per_1M_tokens = 200 |
|
cost_per_input_token = cost_per_1M_tokens / 1000000 |
|
cost_per_output_token = cost_per_1M_tokens / 1000000 |
|
|
|
return cost_per_input_token, cost_per_output_token |
|
|
|
class ModelPage: |
|
|
|
def __init__(self, Models: BaseTCOModel): |
|
self.models: list[BaseTCOModel] = [] |
|
for Model in Models: |
|
model = Model() |
|
self.models.append(model) |
|
|
|
def render(self): |
|
for model in self.models: |
|
model.render() |
|
model.register_components_for_cost_computing() |
|
|
|
def get_all_components(self) -> list[Component]: |
|
output = [] |
|
for model in self.models: |
|
output += model.get_components() |
|
return output |
|
|
|
def get_all_components_for_cost_computing(self) -> list[Component]: |
|
output = [] |
|
for model in self.models: |
|
output += model.get_components_for_cost_computing() |
|
return output |
|
|
|
def make_model_visible(self, name:str, use_case: gr.Dropdown, num_users: gr.Number, input_tokens: gr.Slider, output_tokens: gr.Slider): |
|
|
|
output = [] |
|
for model in self.models: |
|
if model.get_name() == name: |
|
output+= [gr.update(visible=True)] * len(model.get_components()) |
|
|
|
model.use_case = use_case |
|
model.num_users = num_users |
|
model.input_tokens = input_tokens |
|
model.output_tokens = output_tokens |
|
else: |
|
output+= [gr.update(visible=False)] * len(model.get_components()) |
|
return output |
|
|
|
def compute_cost_per_token(self, *args): |
|
begin=0 |
|
current_model = args[-1] |
|
for model in self.models: |
|
model_n_args = len(model.get_components_for_cost_computing()) |
|
if current_model == model.get_name(): |
|
|
|
model_args = args[begin:begin+model_n_args] |
|
cost_per_input_token, cost_per_output_token = model.compute_cost_per_token(*model_args) |
|
model_tco = cost_per_input_token * model.input_tokens + cost_per_output_token * model.output_tokens |
|
formula = model.get_formula() |
|
latency = model.get_latency() |
|
|
|
return f"Model {current_model} has a cost/request of: ${model_tco}", model_tco, formula, f"The average latency of this model is {latency}" |
|
|
|
begin = begin+model_n_args |